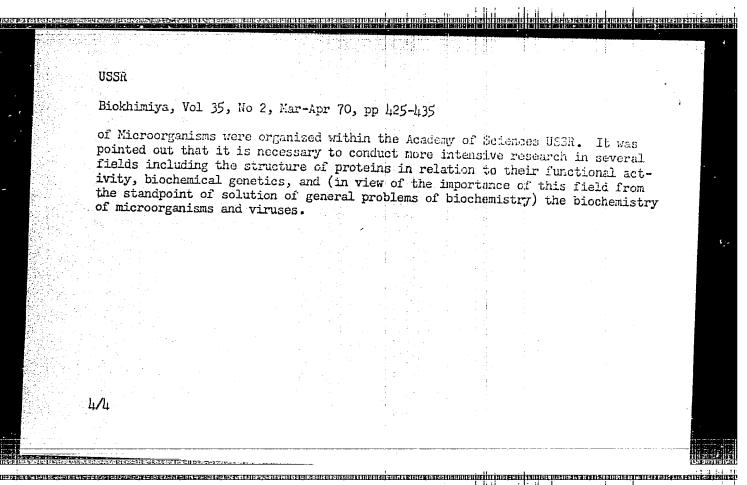
USSR

Biokhimiya, Vol 35, No 2, Mar-Apr 70, pp 425-435

(Moscow) dealt with the role of aminoacyl-t-RNA-synthetases in the synthesis of aminoacyl-t-RNA. t-RNA synthetases specific for methionine, formylmethionine, serine, lysine, and phenylalanine have been identified. A report by R. I. SAGLANIK (Novosibirsk) reviewed work on the suppression of the synthesis of virus nucleic acids by nucleases. Animal experiments showed that administration of DNA-ase prevented the death of mice infected with the viruses of tick-born encephalitis, influenza, and foot-and-mouth disease and made guinea pigs insusceptible for a certain length of time to infection with foot-and-mouth disease. The nucleases did not produce any toxic effects. Application of nucleases in the treatment of human virus diseases showed that they were effective in herpetic keratites, adenovirus conjunctivites, tick-born encephalitides, herpes zoster, and other diseases. At present DNA-ase for the treatment of these diseases is being produced industrially. Its application for 4 yrs at major foci of tick-born encephalitis in Siberia yielded very good results. Research is being continued on the use of nucleases in the treatment of virus diseases of farm animals. In the symposium on the biochemistry of membranes, P. G. KOSTRYUK (Kiev) in a report dealing with the transfer of ions in connection with the generation of excitation potentials by nerve cells expressed the opinion that the action of nerve impulse transmitters


2/4

USSR

Biokhimiya, Vol 35, No 2, Mar-Apr 70, pp 425-435

is associated not only with changes in membrane permeability, but also involves a direct effect producing transfer of cations. This was confirmed in a paper by A. A. BOLDYREV (Moscow), who found that acetylcholine inhibited the active transfer of Ca in a sarcoplasm reticulum fraction. The inhibition was exerted on ATP-ase, which brings about transfer of Ca , and presumably constituted an effect that makes possible the transfer of Ca⁺⁺ from the reticulum curing excitation. Boldyrev pointed out that in view of the localization within muscle cells of the enzymes that regulate acetylcholine metabolism, this effect produced by acetylcholine may be directly related to its functioning as an intracellular regulator of excitation processes. Reports given by members of the Kiev school of biochemists (A. V. PALLADIN, O. V. KIRSENKO, G. L. VAVILOVA, M. K. MALYSHEVA, and others) had a bearing on the functioning of Na-K - activated transport ATP-ases in membranes. I. I. IVANOV (Leningrad) found that ATP gelated sarcoplasm proteins of skeletal muscles, whereas Ca liquefied the gel that formed. He assumed that a reversible gelation produced in this manner is responsible for the plastic tonus of smooth and striated muscles. In a resolution passed by the Congress, progress in biochemical research was reviewed. It was stated that the membership of the Biochemical Society increased from 3500 to 6500 between the First and Second Congress. Institutes of Proteins, Photosynthesis, and Physiology and Biochemistry 3/4

TOTAL THE RESERVE THE RESERVE

USSR

UDC: 577.153.35

e fright dis Ensistement describered des consentents des companies from the first manifest experimental consent de mentent de

DEBORIN, G.A., YANOPOL'SKAYA, N.D., and OFARIN, A.I., Academician, Institute of Biochemistry imeni A.N. Bakh, Academy of Sciences USSR, Moscow

"The Effect of Substrate and Competing Ribonuclease Inhibitors on Ribonuclease Transfer Across an Artificial Lipid Membrane in a Model System"

Moscow, Doklady Akademii Nauk SSSR, Vol 190, No 3, Jan 70, pp 720-721

Abstract: The experimental apparatus consisted of chambers A and B separated by a membrane. Chamber A was filled with a mixture of an enzyme and competing inhibitor, and chamber B with distilled water. The system was kept for 3 hrs at 37°C, then the enzyme content in chamber B was determined by the Fiers and Stocks method. RNA, heparin and mononucleotides obtained by treating RNA with ribonuclease were used as competing inhibitors. Separate experiments have shown that neither of these components acts destructively on the lipid membrane. It was determined that these materials facilitate passage of the enzyme molecules across the membrane. It was postulated that the formation of a complex enzyme-competing inhibitor leads to a conformation of enzyme protein facilitating its transport in the form of a labile compound with membrane lipids.

1/1

10 -

Acc. Nr.	A	bstracting Service:	Re	f. Code	ESPECIAL SERVICES	
A70:	101937 _ c	HEMICAL ABST.	5-70	4110020		
Maria de Proposition de la Colonia de 登高的 de la Colonia de La Co		A Comment of the Comm				
		Christ Comp.		n of		
	~ 107335b E	ffect of the presence of substrate on its transport through a second system. Deborin, G. A	ate and inhibitori ynthetic lipid me	ēώ- • οι		
	ribonuclease brane in a	on its transport through a smodel system. Deborin, G. A. A. L. (inst. Biokhim, im. Bak) Nauk SSSR 1970, 190(3), 720 an RNese-substrate-inhibitor connected the state of the system of th	Yanopol'skaya,	iru.	-	
	D.; Oparin,	Nauk SSSR 1970, 190(3), 720	-1 [Biochem] (Ru	SS). NA.		
	Formation of	an RNase-substrate-inhibitor ononucleotides, or heparin) favo	ored RNuse trans	port		
	through mod	lel lipid membranes. This ver	illes previous pre	the		
	mechanism (rmation of the Michaelis completed RNase transport to its substi	rate through the l	ipid R 1		
	membrane.					
			[44.7] 4	EO	-	
				•		
					9	
4		REEL/FRAME			سكن	
		19851893				
		•				· -
	_ 					111
		ender til 2001 en en i die en				1110

USSR

UDC: 681.332.65

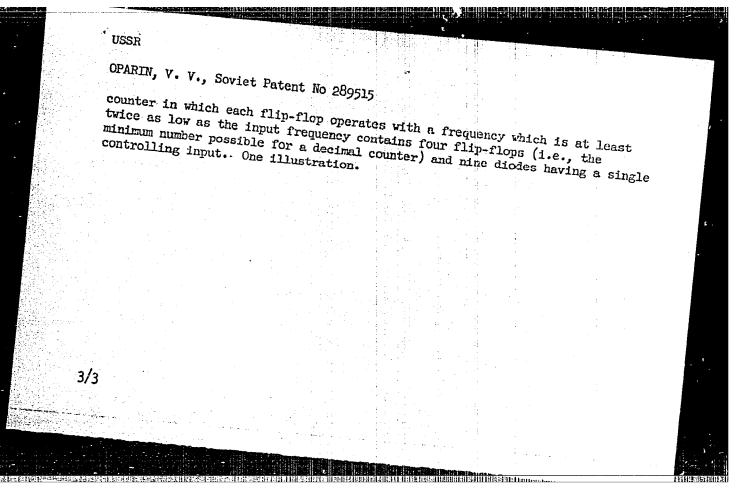
OPARIN, V. V., Leningrad Institute of Aviation Instrument Building

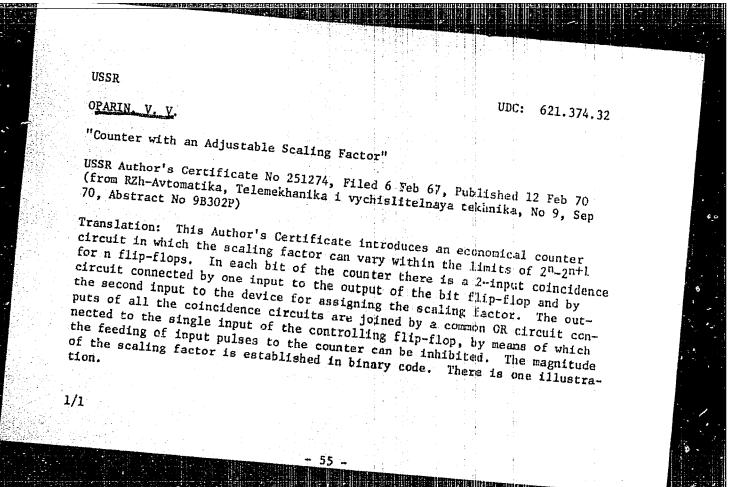
"A Decimal Counter"

USSR Author's Certificate No 289515, filed 24 Jul 69, published 18 Feb 71 (from RZh-Avtomatika, Telemekhanika i Vychislitel'naya Tekhnika, No 10, Oct 71, Abstract No 10B237)

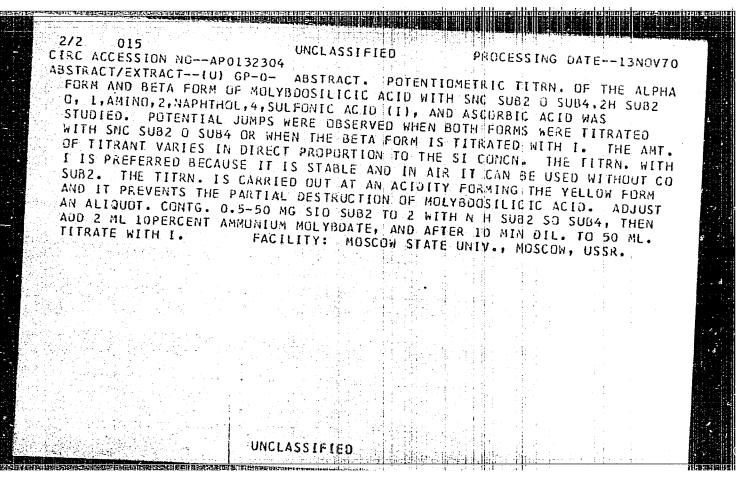
Translation: The proposed circuit belongs to the class of decimal scaling devices and can be used in operation on high frequencies. Most conventional decimal counters are constructed on the basis of series connected flip-flops with a count input. The speed of such circuits cannot be faster than that of an individual flip-flop; therefore, in order to increase the speed of a decimal counter it is necessary to construct the circuit in such a way that the actual working frequency of any flip-flop is less than the input frequency. In order to accomplish this, the device must be designed so that not one of the flip-flops is reset by two successive input pulses. This is utilized in a double ring counter; however, the number of flip-flops in such a counter is increased to five. Another method is possible for reducing the actual working frequency of flip-flop operation: building a circuit with

SERVICE OF THE PROPERTY.


1/3


USSR

OPARIN, V. V., Soviet Patent No 289515


simultaneous carry which operates in a special code. The data published in the literature enable construction of a circuit of this type, as there are examples of the appropriate codes available at the present time and methods have been developed for synthesizing circuits with simulteneous carry for any given code. However, the presence of multiple-pass logic circuits is a considerable impediment to practical use of counters constructed on the above-mentioned principle. The purpose of the invention is to develop a decimal counter circuit which works in a special code and is free of the above-mentioned disadvantages. This purpose is accomplished by utilizing artificial, composite, quadristable elements operating in Grey code constructed from the flip-flops as the elementary cells of the counter rather than using the flip-flops taken separately. In the overall circuit of the counter, sequential and simultaneous carry are used together. In order to construct a composite, multistable flip-flop element, it is necessary to put one diode at each input of the flip-flops which go to make up the element. The input circuits of the flip-flops can often be used as these diodes. In order to produce a binary counter circuit from such multistable elements, it is necessary to add one more diode at the circuit input. Thus a decimal

2/3

FITLE--POTENTIOMETRIC TITRATION OF MOLYADOSILICIC MCID -U-PROCESSING DATE--13NOV70 AUTHOR-(02)-DOROKHOVA, YE.N., OPARINA, L.I. COUNTRY OF INFO--USSR SOURCE--ZH. ANAL. KHIM. 1970, 25(3), 544-7 DATE PUBLISHED ---- 70 SUBJECT AREAS--CHEMISTRY TOPIC TAGS--POTENTIOMETRIC TITRATION, MOLYBDENUM COMPOUND, SILICON COMPOUND, ORGANOTIN COMPOUND, NAPHTHOL, SULFUNIC ACID, ASCORBIC ACID CONTROL MARKING--NO RESTRICTIONS DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--3005/0004 STEP NO--UR/0075/70/025/003/0544/0547 CIRC ACCESSION NO--APO132304 UNCLASSIFIED

1/2 015
UNCLASSIFIED PROCESSING DATE--11SEP70
TITLE--HYDRAULIC RESISTANCE OF A LAYER OF HYDROLYZED LIGNIN -U-

AUTHOR--KORDTOV, S.YA., OPARINA. L.Y., SUKHANOSKIY, S.I., AKHMINA, YE.I.

COUNTRY OF INFO--USSR

SOURCE-GIOROLIZ. LESOKHIM. PROM. 1970, 23(1) 11-12

DATE PUBLISHED-----70

SUBJECT AREAS-MECH., IND., CIVIL AND MARINE ENGR, BIOLOGICAL AND MEDICAL

TOPIC TAGS--LIGNIN, GLUCOSE, INDUSTRIAL WASTE TREATMENT, CARBON PRODUCT, HYDRAULIC RESISTANCE, HYDROLYSIS

CONTROL MARKING--NO RESTRICTIONS

PROXY REEL/FRAME--1989/0211

STEP VO--UR/0328/70/023/001/0011/0012

CIRC ACCESSION NO--APO106867

UNCLASSIFIED

2/2 015 CIRC ACCESSION NO--APO106867 UNCLASSIFIED ABSTRACT/EXTRACT--(U) GP-0-PROCESSING DATE--11SEP70 DETD. EXPTL. OF THE UNCOMPRESSED LAYERS OF HYDROLYZED HCL LIGNIN (WASTE PRODUCT OF GLUCOSE MANUF.), HYDROLYZED H SUB2 SO SUB4 LIGNIN, AND CHARCOAL MADE FROM LIGNIN. AL MATERIALS WERE EITHER GRANULATED OR POHD. IN THE LAMINAR FLOW REGION, THE EQUATION DELTAP EQUALS (W PRIMEZ-2) LA-D SUBE R SUBE AND IN THE TURBULENT FLOW RANGE, THE EQUATION DELTAP EQUALS (H PRIMEZ-2 (LA-D SUBE) (A-R SUBE PLUS B) WERE DBEYED; DELTAP IS THE PRESSURE DROP (HYDRAULIC RESISTANCE) THROUGH A LAYER OF THICKNESS L. W. IS. THE AV. FLOW VELOCITY, RHO IS THE D. OF THE FLOWING GAS, T SUBE IS THE REYNOLDS NO. RELATED TO A IN THE LAMINAR FLOW RANGE BY A EQUALS LAMBDAR SUBE AND IN THE TURBULENT FLOW RANGE BY LAMBDA EQUALS A-R SUBE PLUS B. AND D SUBE IS THE EQUIV. DIAM. OF THE FREE SPACES (CANALS) OF THE SOLID LAYER. ALL THE PARAMETERS OF THESE EQUATIONS WERE DETD. IN THE 5-800 R SUBE RANGE, AND THE CRIT. R SUBE VALUES WERE DETD. UNCLASSIFIED

USSR UDC: 621.373.531.1(088.8)

BATYRSHIN, D. M., GLADCHENKO, V. N., GRACHEV, G. F., OFESKIN, V. D.,
PANKOV, S. V.

"A Royer Generator"

USSR Author's Certificate No 267678, filed 15 Jun 68, published 5 Aug 70
(from RZh-Radiotekhnika, No 1, Jan 71, Abstract No 16232 P)

Translation: This Author's Certificate introduces a Royer generator with provision for controlling the frequency of the generated pulses over a broad range. The transformer windings connected to the collectors of the transistors are shunted by a variable resistor.

1/1

116 -

APPROVED FOR RELEASE: 08/09/2001 CIA-RDP86-00513R002202310011-9"

Single Crystals

UDC 669.28:559.374

TASTREBKOV, A. A., OPLESNIN, B. A., LUBENETS, V. P., KOSYREV, Yu. N., and

"The Annealing of Plastically Bent Molybdenum Single Crystals" YAKUTOVICH, M. V.,

Sverdlovsk, Fizika Metallov i Metallovedeniye, Vol 31, No 4, Apr 71, pp 843-

Abstract: Structural changes and kinetics of polygonization by annealing plastically bent single crystals of molybdenum of four orientations were investigated by X-ray and metallographic methods. It was found that the deformation character depends on the crystal orientation. Kinetics of substructural changes by isothermal annealing in the temperature interval of 1700°C to 2500°C and the extinguishing character of the growth of polygons are discussed. The investigation results are analyzed by reference to microstructures, topograms, and the established dependence of the change of the orientation angle of neighboring blocks on the aging time by isothermal annealing. Four illustr., five biblio. refs.

1/1

CIA-RDP86-00513R002202310011-9" APPROVED FOR RELEASE: 08/09/2001

armanes directores en meste directores confincion		Had a lander, kaltari Mittani edathe anne an raine.
USSR	UDC: 621.391.8:519.27	
IGNAT'YEV, A. N., OP		
	hysically Realizable Autocorrelation Function"	
	n-ta (Works of the Kazan' Aviation Institute), 1970, 72h-Radiotekhnika, No 12, Dec 70, Abstract No 12A60)	NY.
lation function with interval) which in the function. The power function is determined	thors examine the problem of constructing an autocorre- respect to a function (arbitrarily given on a finite me general case is not realizable as an autocorrelation spectrum of the signal corresponding to the resultant ed, and from this spectrum, the spectrum of the signal d. One illustration, bibliography of six titles. N.	on .
1/1		7
-	op 23 tal	

USSR

UDC 65.012.1.519.2

BURKOV, V. N. and OPOYTSEV, V. I., Moscow

"A Metagame Approach to the Control of Hierarchical Systems"

Moscow, Avtomatika i Telemekhanika, No 1, Jan 74, pp 103 - 114

Abstract: The real economic situation of a central administration and a number of subunits can be considered a game in which one player sets the rules. To the extent that economic subunits have their own goals, they cannot be relied upon to conform completely to the purposes of the central administration or to supply completely accurate information. Although the classical games theory does not enable us to select the type of solution in this type of situation which is most satisfactory from the viewpoint of the controlling player, various external considerations indicate that the Nash point equilibrium is an appropriate goal. The controlling player thus attempts to set the rules such that his payoff at the Nash point will be maximized, with the provision that the equilibrium at that point should be globally stable. This is illustrated using a fairly simple model of the distribution of a one-dimensional resource; in the general case the problem is extremely complex.

Under stable or relatively stable conditions in which the central administration invests its resource where the best return can be obtained, it can be shown that competition will lead the subordinate units to provide increasingly accurate 1/2

USSR

BURKOV, V. N. et al., Moscow, Avtomatika i Telemekhanika, No 1, Jan 74, pp 104-114

information about their capacities. If the central administration adopts what is called a "minimum reasonable management" strategy, the equilibrium point will ultimately tend to be the maximum return point. Improving the strategy beyond the minimum does not lead to a significantly better ultimate result.

2/2

- 79 -

173 023 PROCESSING DATE--27NOV70 UNCLASSIFIED TITLE-MEDICAL ASPECTS OF THE PROBLEM OF REST -U-AUTHOR-1021-DANILOV, YU.YE., OPPENGEYM, D.G. Telepate to the telepate to th COUNTRY OF INFO--USSR SOURCE--HOSCOW, SOVETSKOYE ZURAVOOKHRANENIYE, RUSSIAN, NO 3, 1970, PP 54-57 DATE PUBLISHED----70 SUBJECT AREAS-BIOLOGICAL AND MEDICAL SCIENCES TOPIC TAGS-PUBLIC HEALTH, FATIGUE, PREVENTIVE MEDICINE CONTROL MARKING--NO RESTRICTIONS DOCUMENT CLASS--UNCLASSIFIED STEP NO--UR/0753/70/000/003/0054/0057 PROXY REEL/FRAME--3005/0713

UMCLASSIFIED

CIRC ACCESSION NO--APO132816

UNCLASSIFIED CIRC ACCESSION NO--AP0132816 PROCESSING DATE--2710V70 ABSTRACT/EXTRACT-- (U) GP-0- ABSTRACT. IN THE CPSU PROGRAM, THE DIRECTIVES OF THE TWENTY THIRD CONGRESS FOR THE FIVE YEAR PLAN DE DEVELOPMENT OF THE NATIONAL ECONOMY IN THE 1966-1970 PERIOD, AND IN A NUMBER OF DECREES OF THE CC CPSU AND THE COUNCIL OF MINISTERS USSR MUCH ATTENTION IS PAID TO THE ORGANIZATION OF LARGE SCALE REST OF THE PUBLIC. TO THE CONSTRUCTION OF HEALTH RESORTS AND TOURIST CENTERS, AND ALSO TO CONSERVATION OF NATURE IN SUBURBAN REST ZONES AND AT HEALTH RESORTS. THIS IS NOT ACCIDENT. THE ORGANIZATION OF LARGE SCALE REST FOR THE WORKERS AND MEMBERS OF THEIR FAMILIES IS AN IMPORTANT SUCIAL WELFARE, MEDICAL AND ECONOMIC PROBLEM, WHOSE SOLUTION IS EXTREMELY IMPORTANT TO PREVENTIVE MEDICINE AND TO THE FURTHER STRENGTHENING OF THE HEALTH OF THE PROBLEM OF REST HAS ASSUMED PARTICULARLY SERIOUS IMPORTANCE WITH THE ESTABLISHMENT OF THE 5 DAY WORK WEEK WITH THE SPECIFIC SOCIAL WELFARE FEATURE OF SOLBING THE PROBLEM OF REST IN THE USSR, AS DISTINGUISHED FROM THE CAPITALIST COUNTRIES, LIES IN THE FACT THAT THE CONSTRUCTION AND MAINTENANCE OF THE REST ESTABLISHMENTS OF THE SOVIET PEOPLE ARE BASED ON THE USE OF SOCIAL CONSUMPTION FUNDS, SOCIAL INSURANCE FUNDS, THE SPECIAL FUNDS OF INDUSTRIAL ENTERPRISES, AND KOLKHOZ FUNDS. THE REST AND TOURIST ESTABLISHMENTS BUILT IN THE YEARS OF SOVIET POWER AND USED BY MILLIONS OF PEOPLE HAVE PLAYED AN IMPORTANT ROLE IN PREVENTION OF DISEASE, IN IMPROVING PHYSICAL DEVELOPMENT, AND IN STRENGTHENING HEALTH. BUT THE PRESENT NETWORK OF THESE ESTABLISHMENTS IS NOT MEETING THE GROWING NEEDS OF THE PUBLIC FOR ORGANIZED REST.

UNCLASSIFIED

WERE ALEESSION NOAPPLIANTA	· UNCLASSIFIED		PROCESSING DATE-27HOV70			
ABSTRACT/EXTRACTFACILITY: AND PHYSIOTHERAPY.	CENTRAL	INSTI	TUTE	OF HEALTH	RESORT	SCIENCE.
(현실 경기 : 1 : 1 : 1 : 1 : 1 : 1 : 1 : 1 : 1 :	4		t. + '		2	: -
		5 t			•	
양취 경기 교육의 100 전 1	n de la companya de La companya de la co	- !	± 1 € 1 24			
		* :				
사용하는 것이 되었다. 그 사용하는 것이 되었다. 경우 사용하는 것이 되었다. 그						
itika ini. Namatan di Kabupatèn di Kabupatèn Kabupatèn di Kabupatèn di Kabupat						
분기가 있다. 이번 100 시간 1		1. 1.	i ja			
		٠.,				
		:		•		
						100
12 등 12 등 기계			**************************************			
등 하실 것 같다. 그는 그는 그는 그는 그는 그를 보고 있다. 						
			er para		- - -	
				d d		
		:				
UNCL	ASSIFIED					
				Edimentalita		

- 1/2 022 UNCLASSIFIED PROCESSING DATE--025CT70
ATMOSPHERE -U-

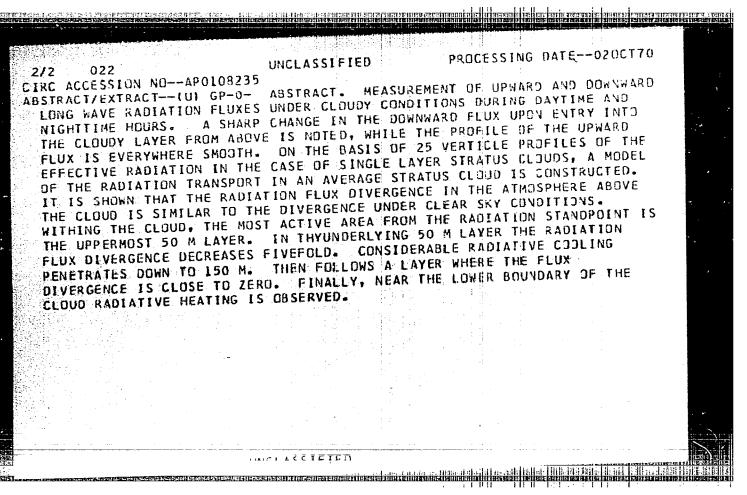
AUTHUR-(03)-GOISA, N.I., OPPENGEIM, V.D., FEYGELSON, E.M.

CCUNTRY OF INFO--USSR

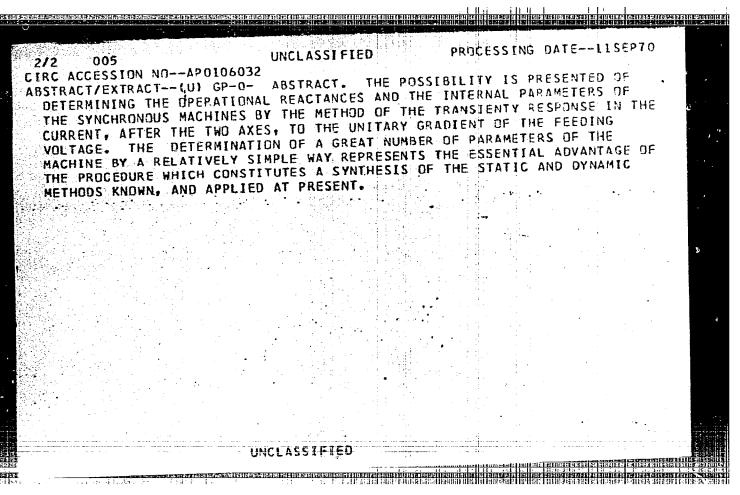
SOURCE--AKADEMIIA NAUK SSSR, IZVESTIIA, FIZIKA ATMOSFERY I OKŁANA, VOL 6 FEB 1970, P 198-203 DATE PUBLISHED-----70

SUBJECT AREAS-ATMOSPHERIC SCIENCES

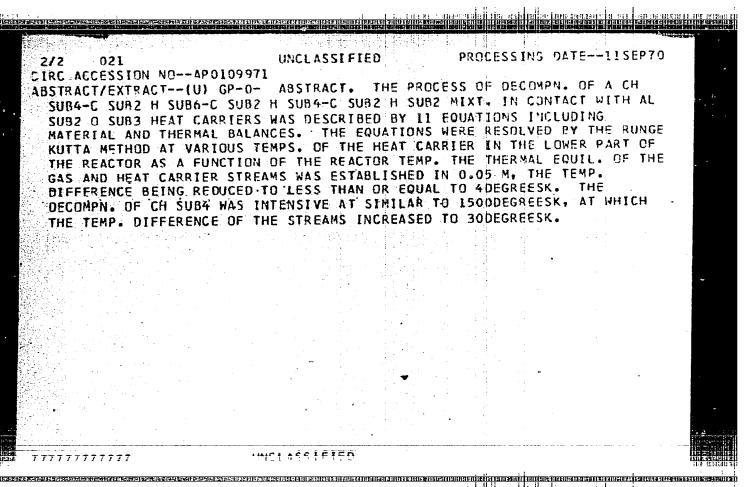
TOPIC TAGS-LUNG WAVE RADIATION. VERTICAL PROFILE. RADIATION FLUX, ATMUSPHERIC CLOUD, ATMUSPHERE, RADIATIVE HEATING, RADIATIVE COOLING


CONTROL MARKING-NO RESTRICTIONS

DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--1989/1905


STEP NO--UR/0362/70/006/000/0198/0203

CIRC ACCESSION NO--APO108235


UNCLASSIFIED

UNCLASSIFIED TITLE-CONCERNING THE DETERMINATION OF THE INTERNAL PARAMETERS OF SYNCHRONDUS MACHINES -U-AUTHOR--OPRISAN, P. COUNTRY OF INFO-RUMANIA SOURCE--ELECTROTEHNICA, 1970, VOL 18, NR 4, PP 129-133 DATE PUBLISHED----70 SUBJECT AREAS--ELECTRONICS AND ELECTRICAL ENGR. TOPIC TAGS--SYNCHRONDUS GENERATOR, IMPEDANCE, PARAMETER CONTROL MARKING--NO RESTRICTIONS DOCUMENT CLASS--UNCLASSIFIED STEP NO--RU/9002/70/018/004/0129/0133 PROXY REEL/FRAME--1988/1251 CIRC ACCESSION NO--APO106032 UNCLASSIFIED

PROCESSING DATE--11SEP70 UNCLASSIFIED TITLE -- MATHEMATICAL DESCRIPTION OF THE THERMAL CONTACT PREPARATION OF AUTHOR-OPRISHED. A.A., AMERIK, B.K., ZHOROV, YU.M., PASKUDSKAYA, L.A., YAKUNINT OF Y COUNTRY OF INFO--USSR SOURCE--KHIM. TEKHNOL. TOPL. MASEL 1970, 15(3), 38-40 DATE PUBLISHED----70 SUBJECT AREAS--CHEMISTRY TOPIC TAGS--THERMODYNAMICS, THERMAL DECOMPOSITION, METHANE, ETHANE, ETHYLENE, ACETYLENE, INDUSTRIAL PRODUCTION, HYDROGEN CONTROL MARKING--NO RESTRICTIONS DOCUMENT CLASS--UNCLASSIFIED STEP NO--UR/0065/70/015/003/0038/0040 PROXY REEL/FRAME--1990/2039 CIRC ACCESSION NO--APO109971 UNCLASSIFIED

USSR

UDC 681.142.624:506.2

OPRISHKO, V. S., ROMANOV, S. P.

"A Plastic Neuron Model"

Moscow, Otkrytiya, izobreteniya, promyshlennyye obraztsy, tovarnyye znaki, No 3, Jan 71, Author's Certificate No 291202, Division G, filed 28 Mar 66, published 6 Jan 71, pp 119-120

Translation: This Author's Certificate introduces a plastic neuron model based on memistors. The model contains n input devices, a reference voltage oscillator, and series-connected amplifier and output circuit. As a distinguishing feature of the patent, computation of the optimum weights of input signals is automated and the circuit is simplified by adding phase detectors with some of their inputs connected through a transformer to the corresponding inputs of the circuits of the model, while the other inputs of the phase detectors are connected to the secondary windings of the transformer connected in the collector circuit of the amplifier. The outputs of the phase detectors are connected through limiting resistors to the controlling electrodes of the corresponding memistors.

1/1

______155 -- ___

1/2 051 UNCLASSIFIED PROCESSING DATE--04DEC70
TITLE--MECHANICAL AND THERMOMECHANICAL PROPERTIES OF POLYIMIDE FIBERS -U-

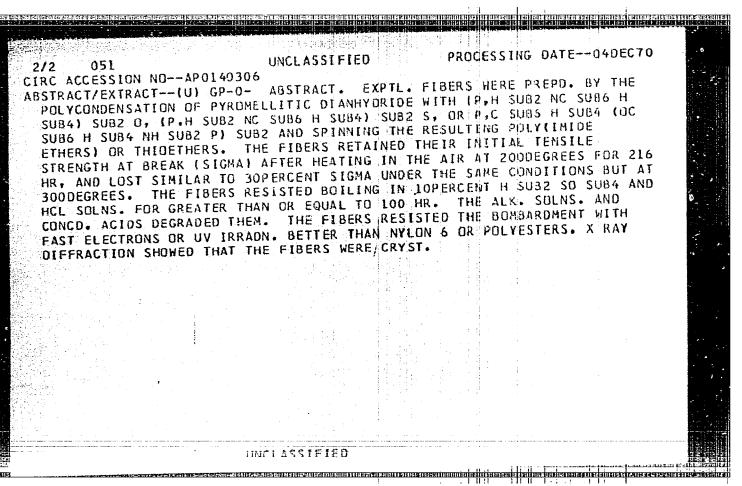
AUTHOR-(05)-OPRITS, Z.G., KUDRYAVTSEV, G.I., KORZHAVIN, L.N., GINZBURG,

B.M., FRENKEL, S.YA. COUNTRY OF INFO--USSR

SOURCE-KHIM. VOLOKNA 1970, (3), 61-4

DATE PUBLISHED-----70

SUBJECT AREAS--MATERIALS, PHYSICS


TOPIC TAGS--SYNTHETIC FIBER, POLYIMIDE RESIN, PLASTIC MECHANICAL PROPERTY, PYROMELLITIC ACID, ORGANIC SULFUR COMPOUND, ETHER, TENSILE STRENGTH, ELECTRON BOMBARDMENT, UV RADIATION, NYLON, POLYESTER RESIN, CRYSTALLINE POLYMER

CONTROL MARKING--NO RESTRICTIONS

DOCUMENT CLASS--UNCLASSIFIED PROXY FICHE NO---FD70/605012/E03 STEP NO--UR/0183/70/000/003/0061/0064

CIRC ACCESSION NO--APOL40306

with the term

Organochosphorous Compounds

USSR

UDC: 618.664.066

OPRYA, V. Ya., SMETANKINA, N. P., VALETDINOV, R. K., Institute of Chemistry of High-Molecular Compounds, Kiev

"Polyurethane Coatings Which Contain Phosphorus"

Kiev, Khimicheskaya Tekhnologiya, No 1(61), Jan/Feb 72, pp 54-36

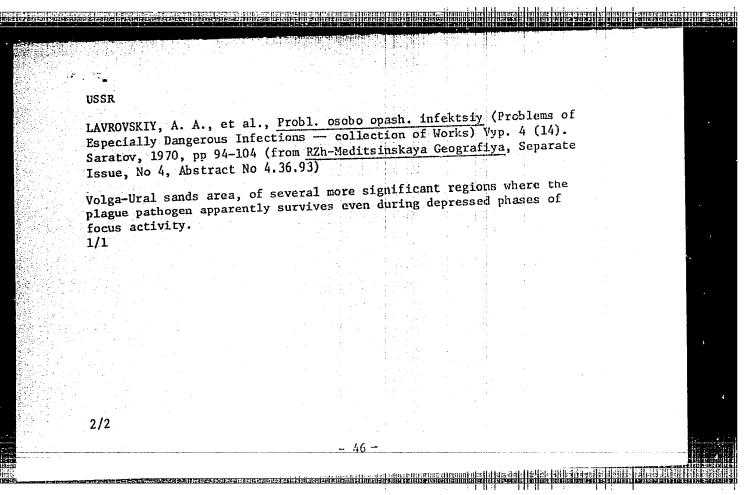
Abstract: In order to determine the possibility of reducing the flammability of polymerthane lacquer compositions, the authors investigate the effect of adding various quantities of tri(hydroxymethyl)phosphine to compositions laced on a copolymer of tetrahydrofuran with propylene oxide combined with polyloc-cyanate. The optimum constraint of physical and mechanical properties is observed in coatings using equimolar amounts of tri(hydroxymethyl)phosphine and polyester. Films with a phosphorus content of 0.03540.25% are self-quenching.

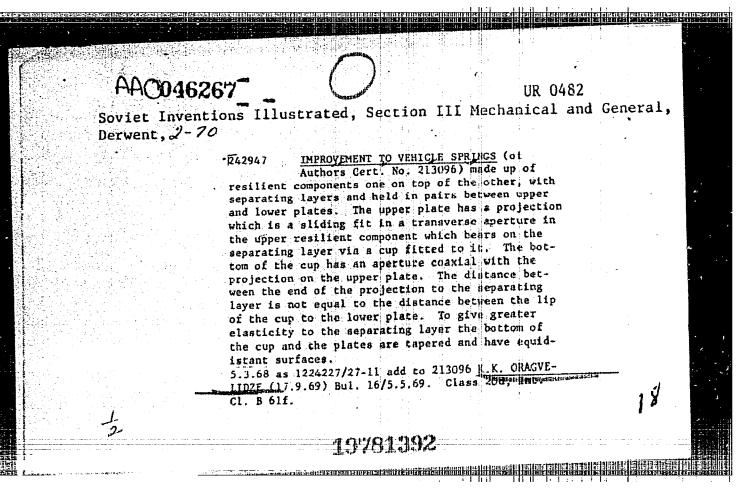
1/1

UDC 911.3.616.981.452(574)

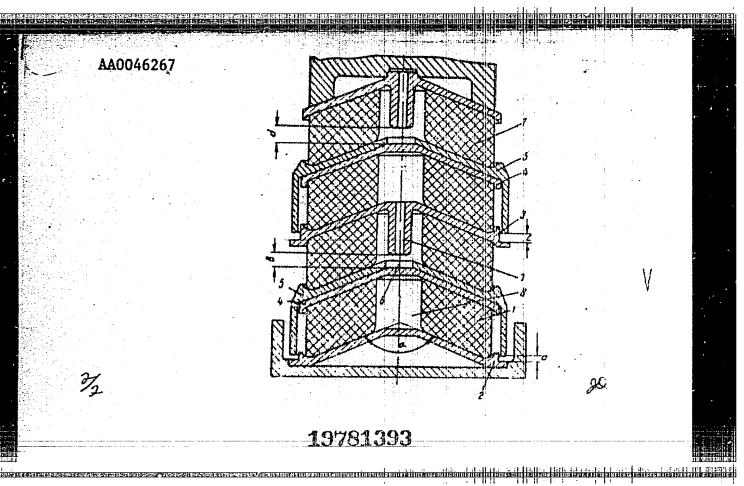
USSR

LAVROVSKIY, A. A., KUCHEROV, P. M., OPTYAKOVA, A. F., ROZHKOV, A. A., DEREVYANCHENKO, K. I., MATSUGA, V. G., BAKHTIGOZIN, I. A., ROZHKOV, A. A., CHIKRIZOV, F. D., KARUSHIN, P. A., and DUBYAGIN, P. S.


"Survival of Plague Bacteria During Interepizootic Years in the Sands Focus Area Between the Volga and Ural River"


V sb. Probl. osobo opasn. infektsiy (Problems of Especially Dangerous Infections -- collection of works) Vyp. 4 (14). Saratov, 1970, pp 94-104 (from RZh-Meditsinskaya Geografiya, Separate Issue, No 4, Abstract No 4.36.93)

Translation: A list is presented of reasons for the abrupt decrease in epizootic activity in the sands plague focus between the Volga and Ural Rivers. Plague bacteria, however, did not disappear from the biocenotic focus system, as evidenced by the epizootics of 1962-1963 and 1966 and the isolated cases of isolation of bacterial cultures from gerbils during depressed phases of focus life. It becomes more and more evident that the phenomenon of microfocality is an indispensible attribute of existence of plague bacteria in the biocenosis. Materials on landscape adjustment of particularly stable plague epizootics facilitate the definition, in the


1/2

APPROVED FOR RELEASE: 08/09/2001 CIA-RDP86-00513R002202310011-9"

"APPROVED FOR RELEASE: 08/09/2001 CIA-RDP86-00513R002202310011-9

Radiobiology

USSR

UDC. 612.014.481.1

DOLGOV, Ye. G. and ORALBAYEV, K., O.,, Semipalatinsk Medical Institute

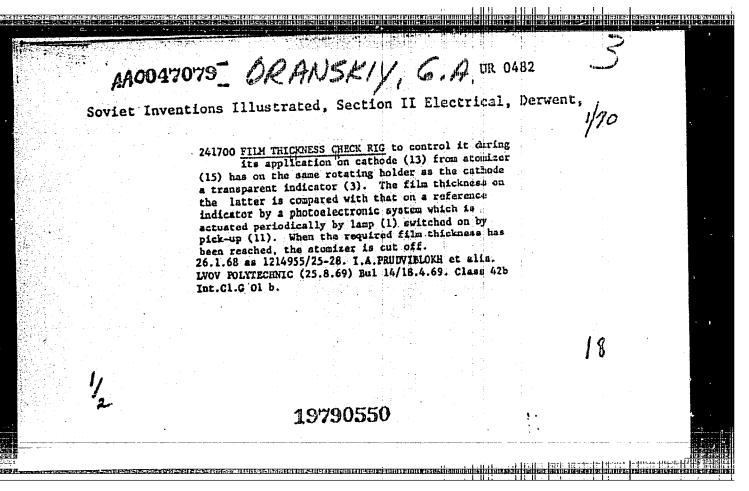
"Some Mechanisms of the Damaging Effect of Irradiation and of Radiomimetic Agents"

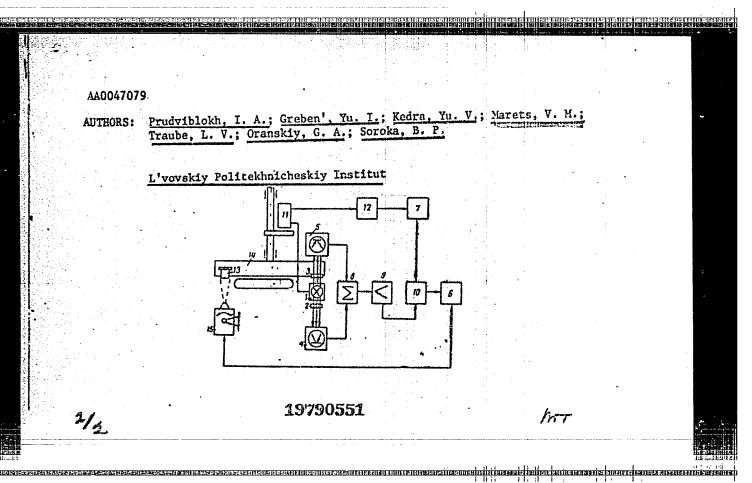
Alma-Ata, Izvestiya Akademii Nauk Kazakhskoy SSR, No 1, Jan/Feb 71, pp 56-59

Abstract: Changes in the resistance of white rats to mercury dichloride (a typical thiotoxin) were studied at various intervals after whole-body x-ray irradiation and administration of two alkylating agents belonging to chloroethylamines: sarcolysin and Thio-TEPA. The results of this investigation have clearly demonstrated that endogenous thiols are indeed involved in the development of pathological changes after exposure to ionizing radiation and after administration of alkylating compounds.

1/1

USSR UDC: 577.4


ORANOV, A. M.


"Use of Multifunctional Elements With Independent Inputs for Covering Circuits Made of Elements of the AND-NOT Type"

Tr. Sib. fiz.-tekhn. in-ta pri Tomsk. un-te (Works of the Siberian Physicotechnical Institute Affiliated With Tomsk University), 1971, vyp. 62, pp 38-48 (from RZh-Kibernetika, No 8, Aug 72, Abstract No 8V455)

[No abstract]

1/1

USSR

UDC: 621.372.543(088.8)

ZAKHAROV, V. V., ORANSKIY, V. N.

"An Active Low-Frequency Filter"

USSR Author's Certificate No 266097, filed 2 Oct 68, published 12 Nov 70 (from RZh-Radiotekhnika, No 5, May 71, Abstract No 5D73 P)

Translation: This Author's Certificate introduces an active filter which contains an input transformer and a single-stage transistorized regenerative amplifier with two inputs, one of which is connected to a positive feedback circuit, while the other is connected to a negative feedback circuit. To eliminate the delay introduced by the filter, the input signal source is connected between the amplifier input tied to the positive feedback circuit and the common conductor, while the primary winding of the input transformer is connected to the same point through a blocking capacitor. Between the amplifier input tied to the negative feedback circuit and the common conductor is the secondary winding of the input transformer.

1/1

- 51 -

	USSR		
	ORAV, T., SHANGIN-BEREZOVSKIY, ORAV. I.	·	
	Madiateionne		
	Radiatsionnyy mutagenez i modifitsiruyushchiye yego usloviya (Radiatioo copies printed Radiatio It). Tallin, Valuus 1970		
, A	Sutagenesis and Conditions Modifying It). Tallin, Valgus, 1972, 215 p	on	
1	ntroduction Contents	P.,	
1	aterial and math.	Page	
1	• RADIOSENSTITUTOR OF DIAGONAL CONTRACTOR OF THE	5	
	RADIOSENSITIVITY OF PLANTS AND FACTORS THAT DETERMINE IT (Jointly 1. Genetic factors of main. I. Kalam)	10	
	1. Genetic factors of radioresistance 2. Physiological and extensistance	17	
. I	resistance external factors influence	19	
	• INFLUENCE OF GROWTH CONDITIONS OF IRRADIATED SEEDS ON THE GENETIC 1. Influence of coding	39	
	1. Influence of soil fertility in the broad sense of the term 2. Influence of moisture routing conditions	57	
	fertilization in M ₁ on postradiative mutational	57	
		66	
1/2	solutions of sulfates of bivalent metals on the genetic effect of irradiation (jointly with Yu. I. Kalam)		
		77	

US	SR		
Or	<u>및 선</u> 기는 가장 되었다. 그는 그들이 일본들은 보이를 가고 있다.		
O.	AV, T., et al., Valgus, 1972, 215 pp		
	4. Influence of temperature, oxygen and storage of irradiated		
II	MUTAGENESIS. EFFECT OF BIOLOGICALLY ACTIVE SUBSTANCES ON	83	
	1. Combined physical and the combined physical combined physical and the combined physical and t	101	
	2. Results of field experiments on the combined application of irradiation and ethylenimine to barley.	101	
	irradiation and ethylenimine to barley		
	Jointly acting upon la of chemical mutagens and radiation	106	
	4. Analysis of the cytogenetic effect during the combined appli-	136	
	second generations of substances and mutagenetic processes in	155	
	mutation process	166	
IV.	ON THE GUESTION OF INCREASING THE LINE	181	
1	TION OF RADIATION MUTAGENESIS IN SELECTION WORK Bibliography	186	
2/2		199	
	- 91 -		

USSR USSR		
ORAV, T., SHANGIN-BEREZOVSKIY, ORAV, I.		·
Radiatsionnyy mutagenez i modifitsiruyushchiye yego usloviya (Radia Mutagenesis and Conditions Modifying It). Tallin, Valgus, 1972, 22	ation 15 pp,	
Introduction Contents		
Material and methods	Page	
I. RADIOSENSITIVITY OF PLANTS AND FACTORS THAT DETERMINE IT (Jointl. 1. Genetic factors of main. I. Kalam)	5 10 y	
1. Genetic factors of radioresistance 2. Physiological and articles and resistance	17	
resistance and external factors influences.	19	
II. INFLUENCE OF GROWTH CONDITIONS OF IRRADIATED SEEDS ON THE GENET 1. Influence of soil decisions	39	•
1. Influence of soil fertility in the broad sense of the term 2. Influence of moisture and conditions	57	
fertilization and regime, time of sowing and	57	٠ ٥
3. On the influence of postradiative mutational variability solutions of sulfates of bivalent metals on the genetic effect of irradiation (jointly with Yu. I. Kalam)	66 ;	
	77	0
ANALYSI MARKANI MARKAN		

		er aller de la la la conce
		·
USSR A CONTROL OF THE PROPERTY		
ORAY m		
ORAV, T., et al., Valgus, 1972, 215 pp		
4. Influence of tarment		
4. Influence of temperature, oxygen and storage of irradiated seeds on the effects of irradiation		
111. CONCERNING THE THEILENCE OF PROTOCOLOR	83	
MITAGENESIS. EFFECT OF REVEALING LATENT VARIABILITY 1. Combined physical and about the state of biologically active substances on	. •	
1. Combined physical and chemical mutagenesis	101	
	101	
irradiation and ethylenimine to barley	106	
3. Complex interactions of chemical mutagens and radiation jointly acting upon barley scade as allowed and radiation	700	
4. Analysis of the cutous seeds of different mutability	136	
cation of γ -irradiation and ethylenimine		
	155	
second generations of irradiated plants	166	-
6. On the question of the physiological understanding of the mutation process	700	
IV. ON THE QUESTION OF INCREASING THE	181	· ·
TION OF RADIATION MUTAGENESIS IN SELECTION WORK	:	
	186	
	199	,
		-
- 71.~		
		72

Genetica

USSR

UDC 575.113:581.154

ORAV, T., and ORAV, I., Institute of Experimental Biology, Academy of Sciences Estonian SSR

"Increase in the Penetrance of Induced Chlorophyll Mutations Under the Effect of Biologinally Active Substances"

Tallin, Izvestiya Akademii Nauk Estonsloy SSR, Biologiya, Vol 20, No 2, 1971, pp 159-167

Abstract: It was shown in earlier work that chlorophyll mutations of barley often remain latent and are not manifested in subsequent generations. Treatment of barley seeds with biologically active substances such as ethylenimine or hydraxine HCl in small doses close to those producing a stimulating effect increased the penetrance of mutations with the result that there was a significant increase in the number of chlorophyll mutants among plants grown from the treated seeds. On the assumption that other biological stimulants must have a similar effect, the action of the growth stimulant SRV applied to H₂ or M₃ seeds of spring barley was studied. SRV is a mixture with the empirical formula C₅₃H₄O₂₂N₃ of polyfunctional acids (mol. wt. 100-1,100) derived from 1/2

AND THE REPORT OF THE PROPERTY OF THE PROPERTY

USSR

ORAV, T., and ORAV, I., Izvestiya Akademii Nauk Estonoskoy SSR, Biologiya, Vol 20, No 2, 1971, pp 159-167

oil shale. Upon treatment of the barley seeds with SRV before or after sowing, the occurrence of chlorophyll nutants in families with latent nutations was increased. In some experiments that were conducted, an effect of SRV in increasing the frequency of mutations after seeds had been subjected to gammairradiation or treated with othylenimino was observed. In all experiments the most effective concentrations of SRV were in the 0.002-0.15 range. The maximum increase in the frequency of chlorophyll mutations (by a factor = 2) was for the types albina, viridis, atrovirons, flavoviridis, and xanthoalbina. The increase was smaller for strains of the xantha type and absent for strains of the rare types viridoalbina and viridomaculata. A comparison of the frequency of mutations obtained under the effect of SRV with the theoretically expected frequencies of occurrence of recessive mutants with various coefficients of lethality indicated that in the five types on which the greatest action was exerted a considerable portion of latent hereditary changes was activated. For the type albina the number of mutants was close to the theoretical maximum.

2/2

~ Q --

Genetics

USSR

UDC 575.113:581.154

ORAV, T., and ORAV, I., Institute of Experimental Biology, Academy of Sciences

"Increase in the Penetrance of Induced Chlorophyll Mutations Under the Effect of Biologinally Active Substances"

Tallin, Izvestiya Akademii Nauk Estonsloy SSR, Biologiya, Vol 20, No 2, 1971, pp 159-167

Abstract: It was shown in earlier work that chlorophyll mutations of barley often remain latent and are not manifested in subsequent generations. Treatment of barley seeds with biologically active substances such as ethylenimine or hydrazine HCl in small doses close to those producing a stimulating effect increased the penetrance of mutations with the result that there was a significant increase in the number of chlorophyll mutants among plants grown from the treated seeds. On the assumption that other biological stimulants must have a similar effect, the action of the growth stimulant SRV applied to M₂ or M₃ seeds of spring barley was studied. SRV is a mixture with the empirical formula C₅₃H₄O₂₂N₃ of polyfunctional acids (mol. wt. 100-1,100) derived from 1/2

USSR

ORAV. T., and ORAV, I., Izvestiya Akademii Nauk Estonoskoy SSR, Biologiya, Vol 20, No 2, 1971, pp 159-167

oil shale. Upon treatment of the barley seeds with SRV before or after sowing, the occurrence of chlorophyll mutants in families with latent mutations was increased. In some experiments that were conducted, an effect of SRV in increasing the frequency of mutations after seeds had been subjected to gammairradiation or treated with ethylenimine was observed. In all experiments the most effective concentrations of SRV were in the 0.002-0.1% mange. The maximum increase in the frequency of chlorophyll mutations (by a factor 2) was for the types albina, viridis, atrovirens, flavoviridis, and xanthoalbina. The increase was smaller for strains of the xantha type and absent for strains of the rare types viridoalbina and viridomaculata. A comparison of the frequency of mutations obtained under the effect of SRV with the theoretically expected frequencies of occurrence of recessive nutants with various coefficients of lethality indicated that in the five types on which the greatest action was exerted a considerable portion of latent hereditary changes was activated. For the type albina the number of mutants was close to the theoretical maximum.

2/2

... 0 ...

USSR

UDC 621.378.33.016.35

BASHKIN, A. S., BELEKOV, E. M., GONCHUKOV, S. A., GRATHVSKIY, A. I., PETROVSKIY, V. E., PROTSENKO, Ye. D.

"Stabilizing the Frequency of Gas Laser Emission by the Method of Comparison With a Radio Frequency"

Moscow, Kvantovaya Elektronika, No 2, 1971, pp 40-49

Abstract: The authors study the intermode spacing as a function of various parameters of a laser on a wavelength of 0.63 µ operating under conditions of emission of three or two axial modes. It is proposed that certain properties of of the frequency characteristics be used to stabilize the emission frequency of a gas laser by the method of comparing the intermode spacing with a radio frequency. The resultant experimental data are theoretically studied for the case of emission of three axial modes in the region of symmetric tuning. It is shown how a stabilized gas laser can be made with a relative long-term frequency stability exceeding the results stability of such a laser (assuming high relative stability for long time intervals) will be determined by the displacement of the center of the line of the atomic transition due to various factors.

en de la composition della composition de la composition della com

USSR

UDC: 621.375.82

BASHKIN, A. S., ORAYEVSKIY, A. N.

"Photorecombination Lasers (Survey)"

Moscow, Kvant. elektronika--sbornik (Quantum Electronics--collection of works), No 1(13), "Sov. radio", 1973, pp 5-29 (from RZh-Fizika, No 8, Aug 73, abstract No 9D1071 by the authors)

Translation: The physical principles of the theory of operation of photo-recombination lasers are examined. An investigation is made into methods of creating pulsed and continuous lasers. Possible ways of realizing specific systems are considered. The main emphasis is laid on the advantages of photorecombination lasers: a wide band of working wavelengths (from the UV to the IR), the possibility of frequency tuning (at least 10%), and high efficiency. Bibliography of 79 titles.

1/1

RHEROTET IN THE CONTROL OF THE CONTR

USSR

BASOV, N. G., ORAYEVSKIY, A. N., et al., Lebedev Physics Institute, USSR Academy of Sciences

"Nonequilibirum Oscillation Kinetics of Molecules in the Presence of a Resonant Laser Radiation Field"

Moscow, Zhurnal Eksperimental'noy i Teoreticheskoy Fiziki, Nov 73, pp 1837-1856

Abstract: The oscillation kinetics of molecules under nonequilibrium conditions produced by resonant laser radiation is considered within the framework of the harmonic oscillator model. A method is developed which can be employed for studying the response of the system to an external field whose frequency is identical to that of one of the vibration levels (arbitrary multiplicity resonance). The nonequilibrium distribution function is calculated for stationary and quasistationary conditions. The dependence of the vibrational energy and decay rate of the system on external parameters determined. The extreme characteristics are determined. Similar questions are studied for nonequilibrium conditions produced by resonant laser radiation via a cascade mechanism of population of the vibrational levels. The article includes 22 equations and six figures. There are 32 references.

1/1

APPROVED FOR RELEASE: 08/09/2001 CIA-RDP86-00513R002202310011-9"

USSR

BASOV, N. G., BASHKIN, A. S., IGOSHIN, V. I., ORAYEVSKIY, A. N., and YURYSHEV, N. N.

"Study of Vibrational Energy Transfer From OD to CO2"

Moscow, Pis'ma v Zhurnal Eksperimental'noy i Teoretichaskoy Fiziki, Vol 16, No 10, 20 Nov 72, pp 551-555

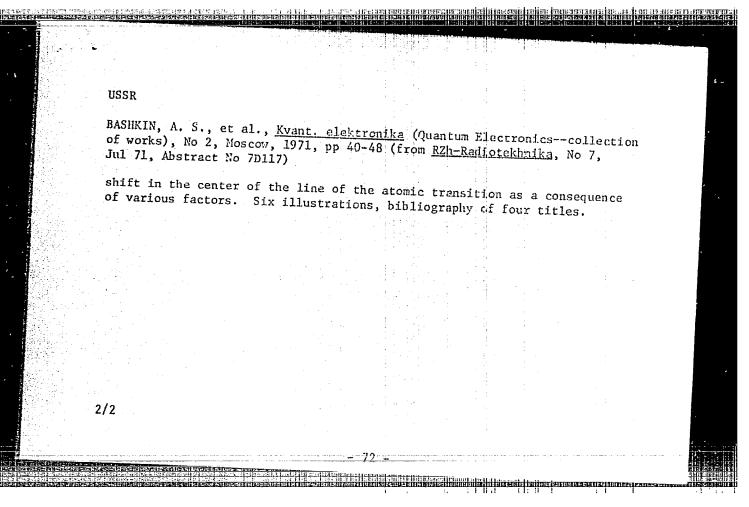
Abstract: The article reports the first detection of effective energy transport from the OD radical to $\rm CO_2$ molecules, resulting in the laser effect in a mixture of $\rm O_3$, $\rm D_2$, and $\rm CO_2$ at a wavelength of 10.6 microns. A simple analytic reaction model and the results of measuring the time characteristics of the laser generation pulse are used to evaluate the rate constant for vibrational-vibrational energy exchange between OD and $\rm CO_2$. The authors used two measurement methods — according to the time delay of generation relative to the onset of initiation, and according to attenuation of the chemical laser generation signal. A laser tube 80 cm long and 1.5 cm in diameter was used in the experiment. Pumping was effected by two IFP-20000 lamps.

1/1

USSR

UDC 621.373:530.145.6

BASHKIN, A. S., BELENOV, E. M., GONCHUKOV, S. A., ORATEVSKIV, A. H. PETROVSKIY, V. N., PROTSENKO, Ye. D.


"Stabilizing the Emission Frequency of a Gas Laser by the Method of Comparison With a Radio Frequency"

V sb. <u>Kvant. elektronika</u> (Quantum Electronics-collection of works), No 2, Moscow, 1971, pp 40-48 (from <u>AZh-Radiotekhnika</u>, No 7, Jul 71, Abstract No 7D117)

Translation: The authors study intermode spacing as a function of various laser parameters for a laser operating on a wavelength of 0.63 micron emitting three or two axial modes. It is proposed that certain properties of the frequency responses be used for stabilizing the emission frequency of a gas laser by the method of comparison of the intermode spacing with a radio frequency. A theoretical study is made of the resultant experimental data for the case of emission of three axial modes in the region of symmetric tuning. It is shown that a stabilized gas laser can be made with relatively long-term frequency stabilization, surpassing the results which have been achieved up to the present time. The absolute frequency stability of such a laser (in the case of high relative stability for long time intervals) will be determined by the

1/2

George die Street sand in der Leiter street in der Street in der George der Street in der Street in der Street

۔ أ۔

USSR

BASOV, N. G., ZAVOROTNYY, S. I., MARKIN, YE. P., MIKITIN, A. I., and ORAYEVSKIY. A. M., Physics Institute imeni P. N. Lebedev, Academy of Sciences

"High-Pressure, Pulsed Chemical Laser Using a D2+F2+CO2 Nixture"

No 3. 5 Peb 72, pp 135-137

Abstract: The idea of obtaining an inverted population by energy transfer from "bot" notewhat abidical during a chanical reaction to "cold" notecules was noticed in a cold the cold and with application to the deal lasers. The the authors to increase the charical efficiency and output energy of a pulsed charical hance approximately 10-told, and the successful completion of experiments with the minima at low pressures made it possible for them to understake experiments with the minima reaction pressures. The introduction of CO2 colonies and it possible to put together a working mixima in which the partial product of deuternment and conserving flucture exceeded the

1/3

APPROVED FOR RELEASE: 08/09/2001 CIA-RDP86-00513R002202310011-9"

USSR-

BASOV, N. G., et al., Pis'na v Zhurnal Eksperimental'noy i Teoreticheskoy Fiziki, Vol 15, No 3, 5 Feb 72, pp 135-137

second chain flammability limit of a pure stoichiometric D2-F2 mixture. typical partial pressure ratio of the principal components of the gas mixture -- fluorine, deutorium, curbon dioxide, and helium -- vas 1:1 4:11 [sic] respectively, and the total messure varied within several hundred torr. Experiments uere singer in a steinless steel reactor vessel. Initiation of the reaction was effected by the rediction of a linear flash lump with a brightness temperature of 20,000 05,000 R. It was found that the rate of formation of Throwing along developmention of Flusting molecules under the action of the rediction of the cover being used is insufficient in most cores for the development of coellistics. Therefore, to improve reaction initiation conditions, a readily dissociating fluorine-containing component (nolybdonum hexafluoride or other fluorine compound) was added to the mixture. The MoF6 pressure (several town) was cheern so that the characteristic chemical reaction time should be about 1-2 signateends. On a navelength of about 10.6 microms cresitivates as a true, appears 5 micromeronds after the start of the light pulse and leader 7-10 abecomesones. Spaken lasting about I nicroscend

2/3

ussr

PASOV, N. G., et al., Pis'na v Zhurnal Etsperimental'noy i Tcoreticheskoy Fiziki, Vol 15, No 3, 5 Feb 72, pp 135-137

are semetimes observed at the top of the pulse. The energy in the radiation pulse varies from 5 to 15 j according to the composition of the gas mixture.

The authors thank A. V. PALHRATOV, V. S. ZUYEV, V. L. TAL'ROZA, P. G. GRIGOR'YEV, L. V. KULAHOV, V. T. GALOCHKIN, V. V. GROHOV, B. L. EDROVICH, and G. K. VISIL'YEV for their custotance in the nork.

3/3

USSR

4

BASOV, N. G., GRONDV, V. V., KOSHELEV, Ye. L., MARKIN, Ye. P., ORAYEVSKIV A. N. SHAPOVALOVA, D. S., SHCHEGIOV, V. A., Physics Institute imeni P. N. Lebedev, Academy of Sciences, USSR

 $^{\text{H}}\text{A}$ Continuous-Action DF — ∞_2 Chemical Laser $^{\text{H}}$

Moscow, Pis'ma v (Letters to the) Zhurnal Eksperimental'noy i Teoreticheskoy Fiziki, Vol 13, No 9, 5 May 1971, pp 496-498

Abstract: A report is given on obtaining continuous laser emission in subsonic gas streams. Generation takes place due to \mathfrak{O}_2 molecules excited by means of the transmission of energy from oscillatorily excited DF* molecules obtained in the process of a chain reaction of deuterium with fluorine with purely chemical initiation. 2 figures. 2 bibliographic entries.

1/1

CONTROL OF THE CONTRO

USSR

UDC 621.375.526.001.388

ORAYEVSKIY, A. N., SOKOVA, A. A.

"Effect of Quantum Fluctuations on the Spectral Purity of the Output Signal of Lasers"

Tr. VNII fiz.-tekhn. i radiotekhn. izmereniy (Works of the All-Union Scientific Research Institute of Physicotechnical and Radio Engineering Measurements), 1970, No. 3(33), pp 200-208 (from Referativnyy Zhurnal, Metrologiya i izmeritelinaya tekhnika, No 11, Nov 71, Abstract No 11.32.63)

Translation: The effect of quantum fluctuations on the spectral purity of the output signal of lasers is discussed, the effect of these fluctuations on the electromagnetic field in the resonator is calculated and the fluctuations arising in the radiation field phase are determined. The calculation shows that the broadening caused by spontaneous radiation in the resonator is different from that in free space. The reason for this difference is associated not only with the fact that the probabilities of spontaneous radiation in the resonator and free space are different, but also with the effect of the correlation between atoms in the resonator and the finite interaction time of atoms with the field. 1 ill., 4 ref.

1/1

USSR

UDC 621.378.33

BASOV, N. G., IGOSHIN, V. I., MARKIN, Ye. P., ORAYEVSKIY, A. N.

"Dynamics of Chemical Lasers"

Moscow, Kvantovaya Elektronika, No 2, 1971, pp 3-24

Abstract: The article is a survey of chemical methods of laser excitation. An analysis is made of the possibility of inverting populations of the vibrational levels of molecules in the case of self-sustaining chemical processes (chain and branched-chain reactions, thermal explosion). Special consideration is given to problems in the theory of vibrational relaxation as applied to chemical lasers. The results of experimental studies of a number of laser systems with chemical pumping are presented. Some methods of initiating a reaction in large volumes of reactant are discussed on the qualitative level. A list of chemical lasers is presented (as of 1 Aug 70) with indication of their operating characteristics. Six illustrations, three tables, and a bibliography of 99 titles.

1/1

79 -

THE REPORT OF THE PROPERTY OF

USSR

UDC 621.373:530.145.6

BASOV, N. G., IGOSHIN, V. I., MARKIN, Ye. P., ORAYEVSKIY, A. N. "Dynamics of Chemical Lasers. (A Survey)"

V sb. <u>Kvent. elektronika</u> (Quantum Electronics--collection of works), No 2, Moscow, 1971, pp 3-24 (from <u>RZh-Radiotekhnika</u>, No 7, Jul 71, Abstract No 7D132)

Translation: The paper is a survey of chemical methods of laser excitation. An analysis is made of the possibility of obtaining an inverse population of the vibration levels of nolecules in the case of self-sustained chemical processes (chain and branched-chain reactions, heat explosion). Special attention is given to problems of the theory of vibrational relaxation as applied to chemical lasers. The results of an experimental study of a number of lasers with chemical pumping are presented. Some methods of initiating reaction in large volumes of the reagent are qualitatively discussed. Chemical lasers are listed (as of laugust 1970) with an index of working characteristics. Six illustrations, three tables, bibliography of ninety-nine titles. Resumé.

1/1

USSR

UDC: None

ORAYEVSKIY, A. N. and SHEGLOV, V. A.

"Propagation of Photodissociation Waves in Gases With Chemical Reactions Considered"

Moscow, Zhurnal Eksperimental'noy i Teoreticheskoy Fiziki, Vol. 59, No. 9, 1970, pp 845-856

Abstract: Photodissociation waves are defined as disturbances which can be propagated through a gas with ultrasonic speed. As a consequence of the elementary acts taking place in the gas, its molecules break up into single atoms of the nascent gas. The authors consider the propagation of the waves in the gas if a second gas, capable of chemical activity with the atoms of the first, is mixed with it. A typical example of such a mixture is a binary gas in which a chain reaction is possible. Approximate relationships are obtained for the velocity of the waves by considering a plane layer of the binary gas with a thickness equal to the wavelength, on which a low-density current of quanta from a quasi-

1/2

USSR

ORAYEVSKIY, A. N., et al. Zhurnal Eksperimental noy i Teoreticheskoy Fiziki, Vol. 59, No. 9, 1970, pp 845-856

monochromatic light is normally incident. The authors begin their analysis of the photodissociation waves with a system of a homogeneous equations for the transmission of the radiation and the kinetic equations. It is implicitly assumed, in the analysis, that the reaction between the gases progresses under isothermic conditions. The authors are connected with the Physics Institute imeni P. N. Lebedev, Academy of Sciences USSR.

2/2

USSR

UDC 541.15

ORAYEVSKIY, A. N., Institute of Physics imeni P. N. Lebedev, Academy of Sciences USSR

"Thermal Explosion Limits Under Irradiation"

Moscow, Khimiya Vysokikh Energiy, Vol 5, No 2, Mar-Apr 71, pp 118-120

Abstract: In studying the effect of radiation on thermal explosion, using as an example of the reaction of hydrogen with chlorine, it was shown that in exothermal chemical reactions in which population inversion in the reaction products occurs, the limit of thermal explosion can be shifted towards higher temperatures and pressures by exposing the reaction mixture to sufficiently intensive radiation.

1/1

= 10 ..

USSR

UDC: 621.376:530.145.6:621.376

KLYUYEV, V. P., MASH, D. I., MOROZOV, V. V., MIKOGOSYAN, D. N., ORAYEVSKIY, A. N.

"Detection of Infrared Emission by Shifting it to the Visible Range"

Kratk. soobshch. po fiz. (Brief Reports on Physics), 1970, No 5, pp 38-42 (from RZh-Radiotekhnika, No 10, Oct 70, Abstract No 10D459)

Translation: An experimental investigation was made into the possibility of detecting weak infrared radiation by shifting it in a nonlinear crystal (LiNbO₃) with a powerful pulse of emission from an argon laser. The installation used was sufficiently sensitive to create a nonlinear infrared spectrometer; it is assumed that such a spectrometer can produce broadening of the order of 1 Å. Two illustrations, bibliography of twelve titles. N. S.

1/1

USSR

UDC: 621.373:530.145.6

BASOV, N. G., GALOCHKIN, V. T., KULAKOV, L. V., MARKIN, Ye. P., NIKITIN, A. I., ORAYEVSKIY, A. N.

"A Chemical Laser Based on the Mixture D2+F2+CO2"

Kratk. scobshch. po fiz. (Brief Reports on Physics), 1970, No 8, pp 10-14 (from RZh-Radiotekhnika, No 12, Dec 70, Abstract No 12D226)

Translation: To produce emission on the mixture $D_2+F_2+CO_2$, the authors used the idea of creating a population inversion by transmitting excitation from a "hot" to a "cold" reaction product. With the ratio of D_2 and F_2 pressures equal to 0.9:0.9 mm Hg, the half-width emission pulse duration is ~3 µsec. The addition of 0.1 mm Hg of CO_2 to this mixture cuts the pulse duration in half, and when the pressure is increased to 0.3 mm Hg, emission is cut off on a wavelength of 4 μ , but emission appears on a wave of 10.6 μ . As the pressure rises further, the emission intensity of the pulse increases, reaching a maximum in the range of 1-2 mm Hg. The pulse duration of emission on activated CO_2 molecules is 400 µsec, 1. e. it corresponds to the time of existence of chemiluminescence of excited DF* molecules. The energy in the emission pulse on CO_2 molecules increases in comparison with the emission energy of DF* by a factor of 10, which corresponds to an increase in the quantum yield by a factor of 25. A. K.

1/1

APPROVED FOR RELEASE: 08/09/2001 CIA-RDP86-00513R002202310011-9"

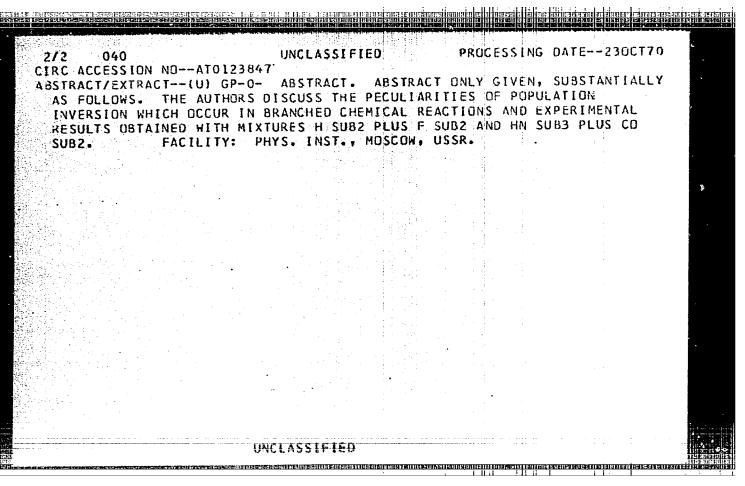
1/2 040 UNCLASSIFIED PROCESSING DATE--230C170
TITLE--BRANCHING REACTIONS AND CHEMICAL LASERS -U-

AUTHOR-(05)-BASOV, N.G., MARKIN, E.P., NIKITIN, A.I., ORAEYSKY, A.N., LEBEDEV, P.N.
COUNTRY OF INFO--USSR. UNITED STATES

SOURCE--IEEE J. QUANTUM ELECTRONICS, USA, VOL. 4E-6, NO. 3, P. 183-4, MARCH 1970, SECOND CONFERENCE ON CHEMICAL AND MOLECULAR LASERS. DIGEST. DATE PUBLISHED----MAR 70

SUBJECT AREAS--CHEMISTRY, PHYSICS

TOPIC TAGS--CHEMICAL REACTION, HYDROGEN, FLUORINE, AMMONIA, CARBON DIOXIDE, CHEMICAL LASER


CONTROL MARKING--NO RESTRICTIONS

DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRANE--2000/0075

STEP NO--US/0000/70/000/003/0183/0184

CIRC ACCESSION NO--ATO123847

UNCLASSIFIED

1/2 060

UNCLASSIFIED PROCESSING DATE--040EC70

TITLE--EFFECT OF THE WAVEGUIDE PROPERTIES OF A P-N JUNCTION ON THE OUTPUT OF GALLIUM ARSENIDE LASER DIODES -U-

AUTHOR-(03)-ALLAKHVERDYAN, R.G., ORAYEVSKIY, A.N., SUCHKOV, A.F.

COUNTRY OF INFO--USSR

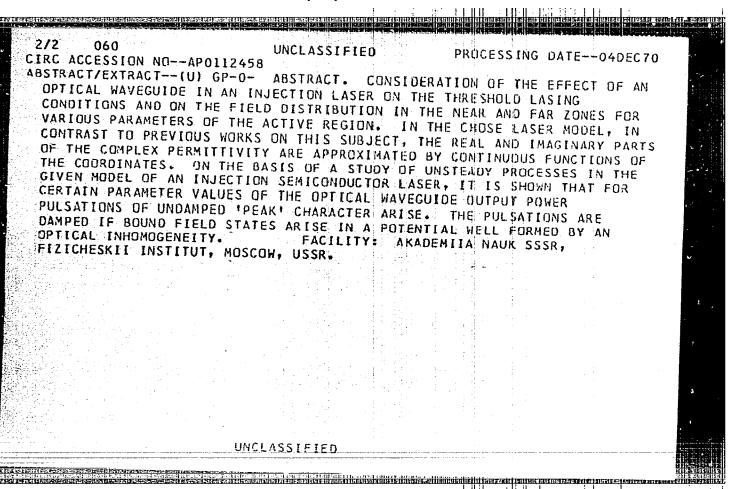
SOURCE-FIZIKA I TEKHNIKA POLUPROVODNIKOV, VOL. 4, FEB. 1970, P. 341-346

DATE PUBLISHED --- FEB 70

SUBJECT AREAS--PHYSICS

TOPIC TAGS--PN JUNCTION, OPTIC WAVEGUIDE, GALLIUM ARSENIDE LASER, GALLIUM ARSENIDE, SEMICONDUCTOR DIDDE, HIGH ENERGY INJECTION DEVICE, LASER EMISSION, LASER ENERGY, LASER POWER DUTPUT, LASER PULSE, DAMPING MOMENT

CONTROL MARKING--NO RESTRICTIONS


DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--1992/1464

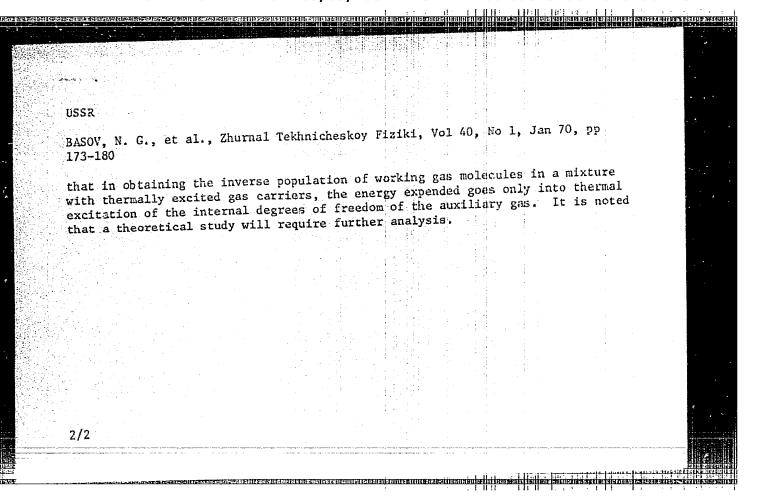
STEP NO--UR/0449/70/004/000/0341/0346

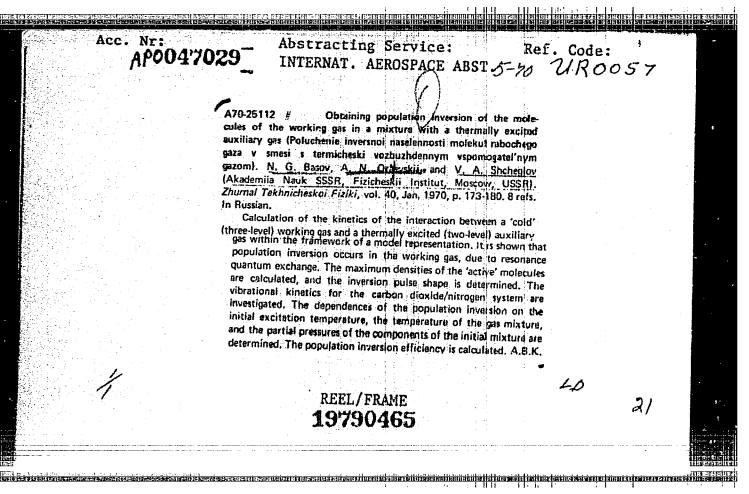
CIRC ACCESSION NO--APO112458

UNGLASSIFIED

APPROVED FOR RELEASE: 08/09/2001 CIA-RDP86-00513R002202310011-9"

USSR


BASOV, N. G., ORAYEVSKIY, A. N., SHCHEGLOV, V. A., Physics Institute imeni P. N. Lebedev of the Academy of Sciences USSR, Moscow


"Production of an Inverse Population of Working Gas Molecules in a Mixture With a Thermally Excited Auxiliary Gas"

Leningrad, Zhurnal Tekhnicheskoy Fiziki, Vol 40, No 1, Jan 70, pp 173-180

Abstract: A model is proposed for calculating the kinetics corresponding to the interaction of a cold three-level working gas and a thermally excited two-level auxiliary gas. It is shown that there is an inverse population as a result of resonance exchange of quanta in the working gas. The limiting densities of the active molecules are calculated and the shape of the inversion pulse is determined. The oscillatory kinetics for a specific binary CO_{2-N2} mixture is discussed. A relationship is obtained between the density of the inverse population and the initial excitation temperature, the temperature of the gas mixture, and the partial pressures of the components of the initial mixture. It is shown that in this case one can achieve efficiencies 3-4 times higher than the limiting efficiencies achieved using thermal excitation. This is attributed to the fact

APPROVED FOR RELEASE: 08/09/2001 CIA-RDP86-00513R002202310011-9"

USSR

UDC: None

BASOV, N. G., MAL'TSEV, K. K., MARKIN, Ye. P., MARTYMENKO, V. D., ORAYEVSKIY, A. H., PANKRATOV, A. V., SAGITOV, R. G., and SEACHMOV, A. H.

"Chemical Laser of Mixed Difluoramin With Hydrogen"

Moscow, Shornik kratkiye soobshcheniya no fizike, No 11, November 1971, pp 5-9

Abstract: This brief communication reports oscillations obtained from oscillatory-rotatory transitions of HF molecules resulting from the reaction of NF2H with hydrogen, specifically the time variations of the gain yielded by the mixture as a function of the experimental conditions. The experimental equipment consisted of two lasers, an oscillator, and an amplifier, excited by an electrical discharge through the mixture. The oscillator was a quartz tube 85 cm long and 1.7 cm in diameter, with LiF windows set at the Brewster angle. Determinations were made of the optimal relationships between the pressures of the NF2H and H2 in the mixture, and a curve is plotted of the energy of the pulse oscillation in the mixture as a function of the ratio of the two pressures. Curves are also plotted for the gain factor in the mixture as a function of time express their thanks to L. V. Kulakov for his help in plotting the pulse energy spectrum.

The account account of the control o

USSR

BASOV, N. G., ORAYFVSKIY, A. N., SUCEKOV, A. F., Physics Institute imeni P. N. Lebedev, Academy of Sciences of the USSR

"Feasibility of Ultrashort Laser Pulse Emission on Combination, Vibrational-Rotational Transitions of Molecular Hydrogen"

Moscow, Pis'ma v Zhurnal Eksperimental'noy i Teoreticheskoy Fiziki, Vol 16, No 5, 5 Sep 72, pp 301-304

Abstract: The authors consider the possibility that laser emission might be achieved on transitions which show up in the vibrational-rotational spectrum of hydrogen in the presence of a sufficiently strong electric field E, either AC or DC. The probability of emission or absorption of a quantum is proportional to E^2 . An expression is derived for finding the amplification factor on induced transitions. The results of the study show that it is possible, at least in theory, to achieve emission without an external field which induces transitions.

1/1

- 39 -

E STATE AL STATE SELECTION THE SELECTION OF A STATE SELECTION OF A STATE

1/2 018 UNCLASSIFIED PROCESSING DATE-20NOV70
INSTABILITY IN A PLASMA -U-

AUTHOR-(03)-KOGAN, YE.YA., MOISEYEV, S.S., DRAYEVSKI, V.N.

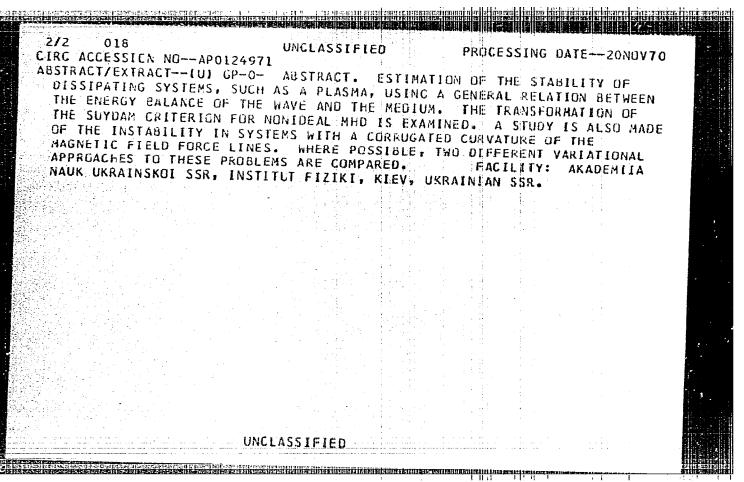
CCUNTRY OF INFO-LSSR

SCURCE-ZHURNAL TEKHNICHESKOI FIZIKI, VOL. 40, APR. 1970, P. 711-716

DATE PUBLISHED----70

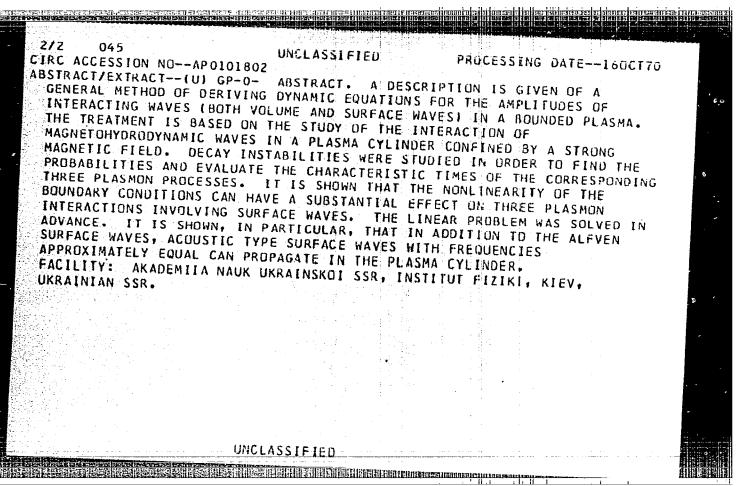
SUBJECT AREAS--PHYSICS

TOPIC TAGS-PLASMA INSTABILITY, MAGNETIC FIELD EFFECT


CENTREL MARKING-NO RESTRICTIONS

PROXY REEL/FRAME--2000/1320

STEP NOT-UR/0057/70/040/000/0711/0716


CIRC ACCESSION NO--AP0124971

UNCLASSIFIED

PROCESSING CATE--160CT70 UNCLASSIFIED 1/2 TITLE-INTERACTION OF MAGNETOHYDRODYNAMIC WAVES IN A BOUNDED PLASMA -U-AUTHOR-(03)-KARPLIUK, K.S., KOLESNICHENKO, I.I., ORAEVSKIY, Y.N. COUNTRY OF INFO--USSR SOURCE-NUCLEAR FUSION, VOL. 10, MAR. 1970, P. 3-11 DATE PUBLISHED ---- 70 SUBJECT AREAS-PHYSICS TOPIC TAGS--MAGNETOHYDRODYNAMIC WAVE, WAVE EQUATION, PLASMA INSTABILITY, STRONG MAGNETIC FIELD, SURFACE WAVE, ACCUSTIC WAVE, PLASMA INTERACTION CONTROL MARKING--NO RESTRICTIONS DOCUMENT CLASS--UNCLASSIFIED STEP NO--AU/0000/70/010/000/0003/0011 PROXY REEL/FRAME--1985/1749 CIRC ACCESSION NO--APO101802

UNCLASSIFIED

USSR

UDC 621.376.234

ORAZGULYYEV, B.

"Silicon Photomagnetic Infrared Receiver"

Moscow, Pribory i Tekhnika Eksperimenta, No 5, 1972, pp 193-194

Abstract: A low-inertia infrared detector based on the photomagnetic effect in the middle vacancies in Si operating at a temperature of 275° K and lower is described. The volt-watt and limiting sensitivity characteristics are presented for a wavelength of 28 microns. The inertia of the detector is 10^{-9} seconds. The detector is not harmed by short-term effects of high power levels which are highly dangerous to p-n-junction detectors. When the detector temperature drops to 80° K its volt-watt sensitivity increases by an order and more. After corresponding calibration it can be used as a power meter like a calorimeter.

Structurally the described photomagnetic receiver does not differ from the InSb receivers with natural conductivity. The sensitive elements of the receiver are in the form of $7 \times 2.5 \times 0.5$ mm³ plates of single p-Si crystals alloyed with B or Al. The specific resistance of the crystals is 0.2-7,800 ohm-cm at room temperature. Al contacts are applied to the ends of the plates, and wires are soldered to them connected with the input of the V6-4 or F116 microvoltmeter. The plate is mounted on the inside wall of a Dewar vessel made of copper (or glass). On the outer wall of the Dewar there is a sealed

USSR

ORAZGULYYEV, B., Pribory i Tekhnika Eksperimenta, No 5, 1972, pp 193-194

window which is transparent for infrared radiation in the Si sensitivity range. The Dewar is placed between the poles of an electromagnet, and the plate is illuminated by a laser beam with a 28 micron wavelength. The laser operates in the continuous mode on water vapor.

USSR

UDC 519.2

ORAZOV, G.

"More Precise Definition of the Theorems of Asymptotic Distribution of the Sums of a Random Number of Random Terms for Different Normalizations"

Nauch. tr. Tashkent. un-t (Scientific Works of Tashkent University), 1972, vyp. 402, pp 87-93 (from RZh-Kibernetika, No 9, Sep 72, Abstract No 9V13)

Translation: Let ξ_n , $n \geq 1$, be the sequence of independent identically distributed random variables for which $\mathbb{M}|\xi_1|^2 < \infty$ ($\mathbb{M}\xi_1 = a$, $\mathbb{D}\xi_1 = v^2$), \mathbb{V}_{λ} is for each $\lambda > 0$ the random variable which is independent of the sequence ξ_n , $n \geq 1$ assuming integral nonnegative values such that $\mathbb{MV}_{\lambda}^2 < \infty$; $\mathbb{V}_{\lambda} \to \infty$ for $\lambda \to \infty$ and $\gamma = o(\alpha)$ (here $\mathbb{DV}_{\lambda} = \gamma^2$, $\mathbb{MV}_{\lambda} = \alpha$). Also let $\xi_{\mathbb{V}} = \xi_1 + \ldots + \xi_{\mathbb{V}_{\lambda}}$. A series of estimates of the rate of convergence to the limiting normal distribution is established for $\lambda \to \infty$ of the random variable $\xi_{\mathbb{V}}$ centered by the values of $a\mathbb{V}_{\lambda}$ or $a\mathbb{V}_{\lambda}$ or $a\mathbb{V}_{\lambda}$ or $a\mathbb{V}_{\lambda}$.

1/1

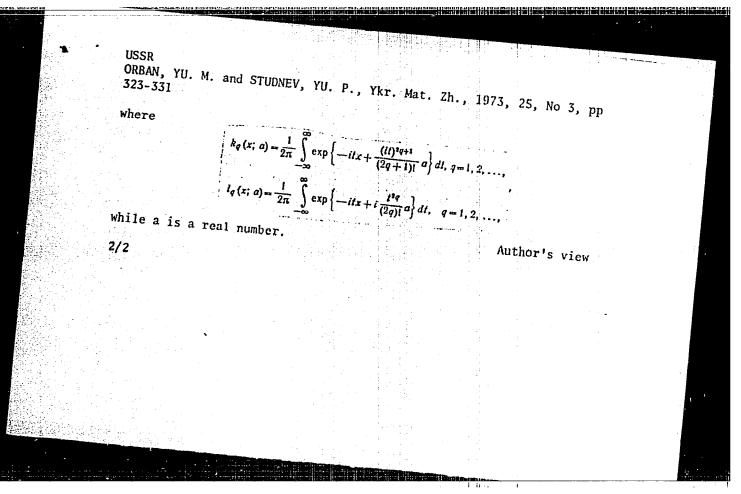
AND THE CONTRACTOR OF THE CONT

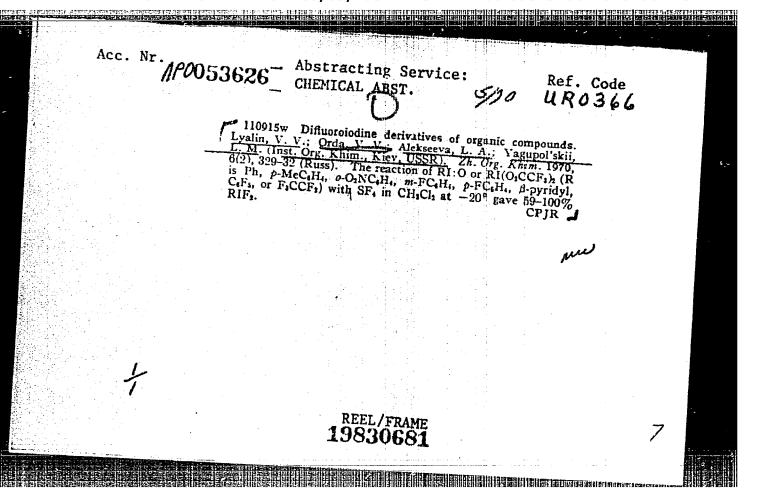
USSR

ORBAN, YU. M. and STUDNEV, YU. P.

"Ariy and Fresnel Functions as Limiting Rules for Convolutions of Functions of Limited Variation"

Ukr. Mat. Zh. [Ukranian Mathematics Journal], 1973, 25, No 3, pp 323-331 (Translated from Referativnyy Zhurnal Kibernetika, No 10, 1973, Abstract No 10V26)


Translation: A certain generalization of a global version of the central limit theorem from the theory of probabilities is studied. Suppose $F_n(x) = V^{*n}(x) = V(x)^* \dots *V(x)$ (* is the sign of the operation of convolution), V(x) is a complex-valued function fixed in $(-\infty, \omega)$ and are studied under which the functions $\phi_n(x) = f_n(B_n x)$ converge to the


$$K_q(x; a) = \int_{-\infty}^{x} k_q(z; a) dz, q = 1, 2, ...,$$

$$L_q(x; a) = \int_{-\infty}^{x} l_q(z; a) dz, q = 1, 2, ...,$$

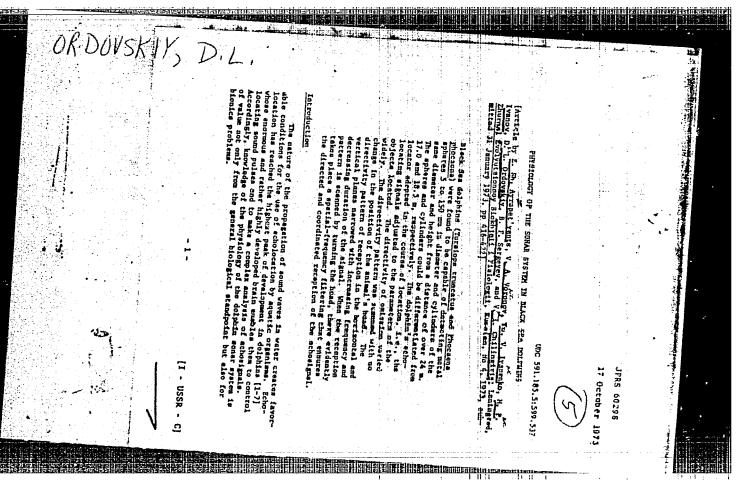
1/2

APPROVED FOR RELEASE: 08/09/2001 CIA-RDP86-00513R002202310011-9"

USSR

UDC 532.517.4

IVANOV, V. N., ORDANOVICH, A. Ye.


"Certain Reverse Relationships Arising in Turbulent Cellular Convection in

Tr. In-t. Eksperim. Meteorol. Gl. Upr. Gidrometeorol. Sluzhby pri Sov. Min. SSSR [Norks of the Institute of Experimental Meteorology, Main Administration for the Hydrological and Meteorological Service, Council of Ministers, USSR], No 26, 1972, pp 51-58, (Translated from Referativnyy Zhurnal, Mekhanika, No 11, 1972, Abstract No 11 B827 by the author's).

Translation: The feedback mechanism developing in cellular convection in a turbulent atmosphere is analyzed. This mechanism is based on the dependence of turbulent exchange factor, determining the degree of instability of a flow by means of the Reynolds number, on external parameters (mean wind speed, boundary layer thickness) and intensity of convection arising. This feedback stabilizes convection and maintains its intensity at a given level. Consideration of the dependence of turbulent exchange factors on degree of instability allows the slight excess of experimental values of Rayleigh numbers over their critical values to be explained. 8 Biblio. Refs.

APPROVED FOR RELEASE: 08/09/2001 CIA-RDP86-00513R002202310011-9"

"APPROVED FOR RELEASE: 08/09/2001 CIA-RDP86-00513R002202310011-9

Acc. Nr:

APO037018

Ref. Code: UR 0239

PRIMARY SOURCE:

Fiziologicheskiy Zhurhal SSSR, 1970, Vol 56, Nr 2, pp 284-288

PACING MICRO-MANIPULATOR FOR MICROELECTRODE STUDIES

G. S. Orduyan

Computer Center Orbeli's and Institute of Physiology, Armenian Acad. Sci. SSR, Erevan.

A complex device for pacing motor and micro-manipulator was suggested inserting a microelectrode into tissue during electrophysiological studies. The device was manufactured out of standard «Razdan-2» computer cells and accomodated for four-phase pacing ctured out or standard (Razdan-2) computer cens and accomputer rocatour-phase package motor. Type IIIAP-521 pacing motor was used as the basic motor. The motor rotation was transmitted to the micro-manipulator by means of Cardan's transmission. (Values of one pace was 4 micross. The device had two working regimens: discrete and incessant. The engile control the microelectroda movement and automatically find the neurons both Apart from the main control table, a separate distant one was provided which enabled to easily control the microelectrode movement and automatically find the neurons both

Dr.

APPROVED FOR RELEASE: 08/09/2001 CIA-RDP86-00513R002202310011-9"

Powder Metallurgy

USSR

UDC 621.762.8

ORDAN'YAN, S. S., and DROZDETSKAYA, G. V., Leningrad Technological Institute

"Effect of the Method of Preparation of Samples From TiC and ZrC on Their High-Temperature Properties"

Kiev, Poroshkovaya Metallurgiya, No 8, Aug 70, pp 63-67

Abstract: A study was made of the strength of samples of different porosity made from TiC and ZrC in the temperature interval 300-3000°K. The presence of "peak" strength is shown at 0.6-0.7 melting temperature, the appearance of which is related to the transition of the materials above the 0.5 melting production from TiC and ZrC on their mechanical properties was established. At identical porosity the strength of slip-cast samples was 30% higher than that of pressure cast samples. Therefore, wider use of the slip-casting method in powder metallurgy is recommended.

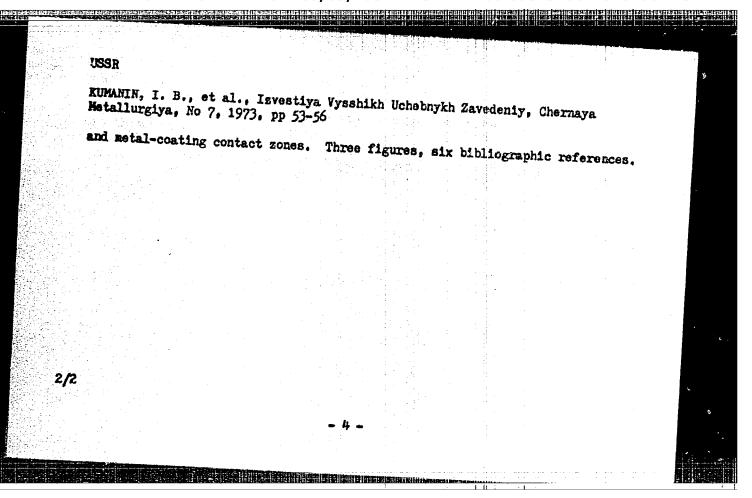
The state of the s

1/1

Coatings

USSR

UDC 621.74.015.621.744.37


KUMAININ, I. B., BAUMAN, B. V., OREKHOV, A. I., ISAYEVA, T. A., SHOL'KIN, A. A., and ZOTOVA, N. G., Moscow Institute of Steel and Alloys"

Ceramic Antiscorching Coatings for Steel Castings"

Moscow, Izvestiya Vysshikh Uchebnykh Zavedeniy, Chernaya Metallurgiya, No 7, 1973, pp 53-56

Abstract: Antiscorching coatings with ceramic type bonding agents were developed on the base of metallophosphates. Starting naterials for the production were orthophosphoric acid H₂PO₄, aluminum hydroxide Al(OH)₃, and chromium acid Cr₂O₃. The coatings possess high refractoriness and resistance, high thermal stability, and chemical inertia in the working temperature interval. They also have high technological qualities, as good covering power, and high sedimentation stability. The coatings do not contain scarce materials and are not expensive. Results of industrial tests are presented of antiscorching coatings on carbon steel and alloy steels. Comparative results of petrographic analyses of antiscorching coatings are discussed by reference to microsections of the mold and of metal-mold 1/2

APPROVED FOR RELEASE: 08/09/2001 CIA-RDP86-00513R002202310011-9"

UNCLASSIFIED TITLE--PAIRED HETEROPOLAR NANOSECOND PULSE GENERATOR -U-

PROCESSING DATE--300CT70

AUTHOR--OREKHOV, A.P.

COUNTRY OF INFO-USSR

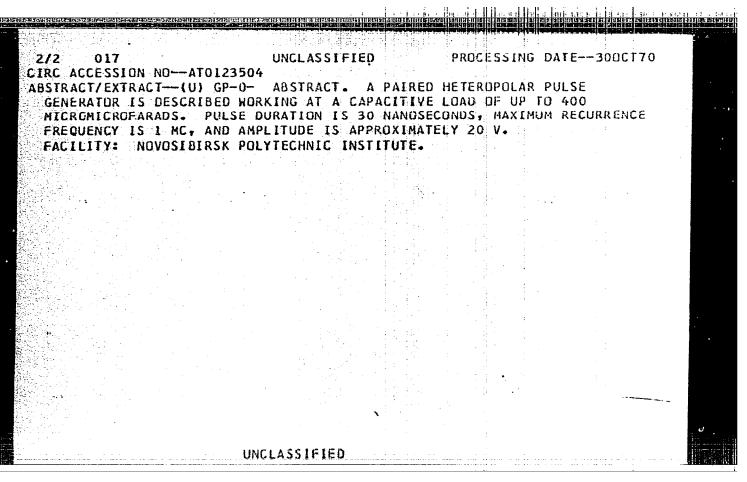
SOURCE-LENINGRAD. IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENIY. PRIBOROSTROYENIYE, NO 2, 1970, PP 10-11

DATE PUBLISHED ---- 70

SUBJECT AREAS-METHODS AND EQUIPMENT

TOPIC TAGS--PULSE GENERATOR, PULSE SIGNAL

CONTROL MARKING--NO RESTRICTIONS


DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--1998/1680

STEP NO--UR/0146/70/000/002/0010/0011

CIRC ACCESSION NO--AT0123504

UNCLASSIFIED

APPROVED FOR RELEASE: 08/09/2001 CIA-RDP86-00513R002202310011-9"

PROVED FOR RELEASE. 1/2 010 TITLE-THE UNIVERSAL LONGITUDINAL DIFFERENTIAL PROTECTION OF SHORT LACLASSIFIED PHOCESSING DATE--11 DECTO AUTHUR-1041-MEZHALS. L.V., ÜREKHOV. L.A., FABRIKANT, V.L., SMIKNOVA. T.V.

CCUNTRY OF INFO-LSSR

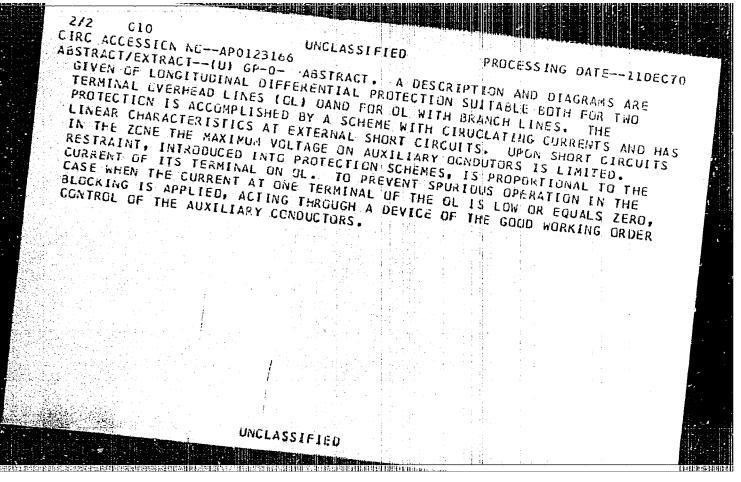
SOURCE--MCSCOW, ELEKTRICHESTVG, NO 3, 1970, PP 22-26

DATE PUELISHED ----- 70

SUBJECT AREAS -- ELECTRONICS AND ELECTRICAL ENGR.

TOPIC TAGS-TRANSMISSION LINE, OVERVOLTAGE, CIRCLUT BREAKER, PROTECTIVE

CONTROL MARKING-NO RESTRICTIONS


DECUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--1999/1198

STEP NO--UR/0105/70/000/003/0022/0026

CIRC ACCESSION NO--APOL23166

UNCLASSIFIED

APPROVED FOR RELEASE: 08/09/2001 CIA-RDP86-00513R002202310011-9"

APPROVED FOR RELEASE: 08/09/2001 CIA-RDP86-00513R002202310011-9"

UNCLASSIFIED PROCESSING DATE-160CT70
TITLE-EFFECT OF THE TRANSITION LAYER AT THE RUBBER RUBBER INTERFACE ON
THE COHESIVE ENERGY DENSITY AND ADHESION BETWEEN LAYERS OF VULCANIZATES
AUTHOR-(04)-OREKHOV, S.V., ZAKHAROV, N.D., KULEZNEV, V.N., DOGADKIN, B.A.

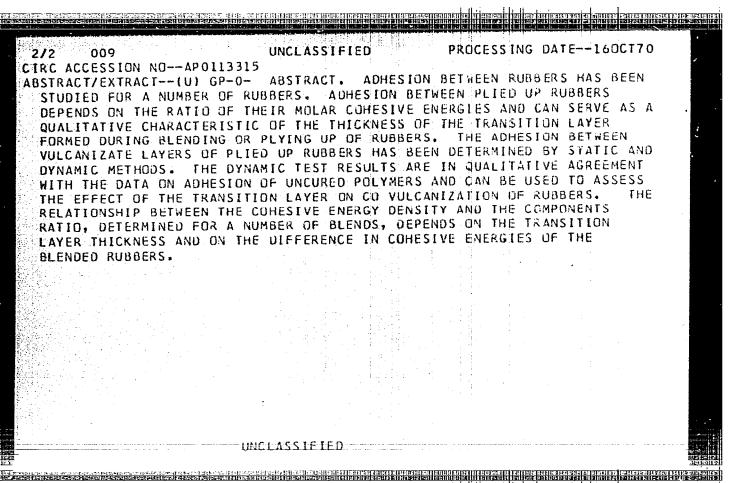
COUNTRY OF INFO--USSR

SOURCE--KOLLDIDNYY ZHURNAL, 1970, VOL 32, NR 2, PP 245-250

DATE PUBLISHED----70

SUBJECT AREAS -- MATERIALS

TOPIC TAGS--VULCANIZATE, ADHESION, ELASTOMER COHESION


CONTROL MARKING--NO RESTRICTIONS

DOCUMENT CLASS--UNCLASSIFIED PROXY REEL/FRAME--1993/0397

STEP NO--UR/0069/70/032/002/0245/0250

CIRC ACCESSION NO--APULI3315

UNCLASSIFIED

CIA-RDP86-00513R002202310011-9 "APPROVED FOR RELEASE: 08/09/2001

USSR

UDC 621.374

SHUVAYEV, V.D., and OREKHOV, V. A.

"Unit to Convert Current Strength Variations to Pulse Frequency"

USSR Authors' Certificate No 293293, Cl. H 03 k 3/16, filed 25 Aug 69, published 2 Mar 71 (from RZh-Avtomatika, Telemekhanika i Vychislitel'naya Tekhnika No 1, Jan 72, Abstract No 1A364P)

Translation: A unit is suggested for converting current strength variations to pulse frequency, using a collector-emitter-coupled blocking oscillator containing a transistorized current-stabilizing stage and a charging capacitor in the emitter circuit of the blocking oscillator's transistor. So that the frequency of the generated pulses can be made dependent on variations in the difference pulse control current, the charging capaciton has connected to it in parallel a resistor and capacitor which are connected in series, with their common outlet connected through a diode to the collector of the subtraction stage transistor, the conductance of which is the reverse of the currentstabilizing stage conductance. 1 illustration.

1/1

CIA-RDP86-00513R002202310011-9"

APPROVED FOR RELEASE: 08/09/2001

	See 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		H HISTORY STREET, STRE
AA904508 Soviet Invent	ions Illustrated, Section	UR 0482 II Electrical, De	rwent,
ar of ci	25552 CONVERTION OF NUMBERS. The happlied to the master conver mbers represent a logarithmic code decoded, analysed and the character an antilogarithm is produced. Logarithmic are employed for the determinant of the character mantissa. 23.2.67, as 1136 A.OREKHOV. A.N.KLIMOV. (17.12.68.)	ter. The /O The digits teristic arithm ination of	
V	17.12.68.)	W	
	1945 1924		4

APPROVED FOR RELEASE: 08/09/2001 CIA-RDP86-00513R002202310011-9"